Calculation of the Temperature Development in a Contact Heated in the Contact Surface, and Application to the Problem of the Temperature Rise in a Sliding Contact

1948 ◽  
Vol 19 (4) ◽  
pp. 361-366 ◽  
Author(s):  
Ragnar Holm
1993 ◽  
Vol 115 (3) ◽  
pp. 411-418 ◽  
Author(s):  
Xuefeng Tian ◽  
Francis E. Kennedy

A model is proposed for use in determining the contact surface temperature in dry and boundary lubricated sliding systems. The model uses the concepts of small scale and large scale heat flow restrictions to divide the temperature increase in a sliding contact into two contributions, a nominal surface temperature rise and a local temperature rise. The model is particularly useful in studying the sliding surface temperature in bodies of finite thickness and in cases when the sliding contact area repeatedly sweeps over the same path on one of the contacting solids. Multiple heat sources within the real area of contact can be included, as can the effects of a cooling and/or lubricating fluid. Experiments were carried out to measure the contact surface temperature rise in several dry and boundary lubricated sliding systems. The experimental results were found to agree with the model.


1994 ◽  
Vol 116 (2) ◽  
pp. 238-245 ◽  
Author(s):  
Brian Vick ◽  
L. P. Golan ◽  
M. J. Furey

The present work examines theoretically the influence of surface coatings on the temperatures produced by friction due to sliding contact. A generalized thermal model is developed which incorporates three-dimensional, transient heat transfer between layered media with thermal coupling at multiple, interacting contact patches. A solution technique based on a variation of the boundary element method is developed and utilized. The method allows for the solution of the distribution of frictional heat and the resulting temperature rise in an accurate yet numerically efficient manner. Results are presented showing the influence of film thickness, thermal properties, velocity, and contact area on the division of heat and surface temperature rise. The results show that a film with thermal properties different than those of the substrate can have a pronounced effect on the predicted temperature rise.


1994 ◽  
Vol 116 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Xuefeng Tian ◽  
Francis E. Kennedy

The surface temperature rise for a semi-infinite body due to different moving heat sources is analyzed for the entire range of Peclet number using a Green’s function method. Analytical and approximate solutions of maximum and average surface temperatures are obtained for the cases of square uniform, circular uniform, and parabolic heat sources. Considering the heat partition between the two contacting bodies, solutions of interface flash temperature are presented for the general sliding contact case as well as for the case of sliding contact between two moving asperities.


1993 ◽  
Vol 115 (1) ◽  
pp. 1-9 ◽  
Author(s):  
X. Tian ◽  
F. E. Kennedy

In this paper, a three-dimensional model of a semi-infinite layered body is used to predict steady-state maximum surface temperature rise at the sliding contact interface for the entire range of Peclet number. A set of semi-empirical solutions for maximum surface temperature problems of sliding layered bodies is obtained by using integral transform, finite element, heuristic and multivariable regression techniques. Two dimensionless parameters, A and Dp, which relate to coating thickness, contact size, sliding speed and thermal properties of both coating and substrate materials, are found to be the critical factors determining the effect of surface film on the surface temperature rise at a sliding contact interface. A semi-empirical solution for maximum surface temperature problems of homogeneous bodies, which covers the whole range of Peclet number, is also obtained.


2014 ◽  
Vol 66 (3) ◽  
pp. 459-467
Author(s):  
Yan Lu ◽  
Zuomin Liu

Purpose – The purpose of this manuscript is to analyze the fusion micro-zone generated by typical rough surfaces and investigate the factors of thermal effects on the tribological performance of surface asperities and its results verified by the experiment. Design/methodology/approach – A three-dimensional fractal rough surfaces sliding contact model has been developed, which takes into account temperature rise and distribution. The finite-element method, Green's function method, thermal conduct theory and contact mechanics are used as the solution methods. Findings – The results yield insights into the effects of the sliding velocity, thermal properties of the material, normal load and surface roughness on the temperature rise of the sliding contact surface. It allows the specification of working conductions' properties to reduce fusion. Originality/value – The model is developed and described by using the features of the contact between one flat surface and one rough surface with varied topographies. It can be easily applied for solving the sliding contact problems with different working conditions and specified for designing the surface accuracy in the severe working condition.


Sign in / Sign up

Export Citation Format

Share Document