real area of contact
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 11)

H-INDEX

34
(FIVE YEARS 1)

2021 ◽  
Vol 901 ◽  
pp. 199-207
Author(s):  
Deepak K. Prajaapti

Due to experimental limitations, sometimes it is challenging to tackle the thorough change in asperity characteristics (contact pressure, real area of contact, asperity radius), which demands a more suitable analytical model for prediction of such characteristics. This work demonstrates an approach for modeling sliding wear that provides an insight into the evolution of surface topography with operational cycles. The wear model is applied on various engineered surfaces to study the change in surface topography with wear cycles. It is concluded that different engineered surfaces nearly with same roughness demonstrate totally different behavior during sliding wear. It is observed that milled surface in comparison to turned, honed and grinding surfaces experiences minimum contact pressure due to very high correlation length. Within the range of wear cycles, maximum increase in the asperity radius is observed for milled surface.


2021 ◽  
Vol 7 ◽  
Author(s):  
Matthias Scherge ◽  
Melissa Stoll ◽  
Michael Moseler

The sliding performance of cross country skis is mainly influenced by the ability of the ski base to minimize capillary forces and contact area. Whereas, the first condition depends on hydrophobicity, the second one is controlled by the ski grinding structure and the morphology of snow. In this contribution the results of sliding tests with five typical grinding structures will be presented and compared to calculations of the real area of contact. Surface topographies were measured and corresponding roughness features were analyzed by 3D optical microscopy. The measured ski base profiles and the measured grain size distribution of granular snow at −2°C were employed within a bearing model for a rough surface in contact with loose and freely-moving snow grains treated as ice spheres. For the five grinding structures, this model revealed a good correlation of the real area of contact between ski and snow with run times in lab-condition sliding tests. The results indicate that the snow-containing volume of the grinding structure is pivotal for tailoring the sliding behavior.


Friction ◽  
2020 ◽  
Author(s):  
Meghshyam Shisode ◽  
Javad Hazrati ◽  
Tanmaya Mishra ◽  
Matthijn De Rooij ◽  
Ton Van Den Boogaard

Abstract Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear. In sheet metal forming processes, sheet surface asperities are deformed due to contact forces between the tools and the workpiece. In addition, as the sheet metal is strained while retaining the normal load, the asperity deformation increases significantly. Deformation of the asperities determines the real area of contact which influences the friction and wear at the tool-sheet metal contact. The real area of contact between two contacting rough surfaces depends on type of loading, material behavior, and topography of the contacting surfaces. In this study, an experimental setup is developed to investigate the effect of a combined normal load and sub-surface strain on real area of contact. Uncoated and zinc coated steel sheets (GI) with different coating thicknesses, surface topographies, and substrate materials are used in the experimental study. Finite element (FE) analyses are performed on measured surface profiles to further analyze the behavior observed in the experiments and to understand the effect of surface topography, and coating thickness on the evolution of the real area of contact. Finally, an analytical model is presented to determine the real area contact under combined normal load and sub-surface strain. The results show that accounting for combined normal load and sub-surface straining effects is necessary for accurate predictions of the real area of contact.


Author(s):  
Yang Xu ◽  
Robert L Jackson ◽  
Yan Chen ◽  
Anqi Zhang ◽  
Barton C Prorok

In this study, an experimental method is proposed to measure the real area of contact between an alumina sphere and an Al surface based on the adhesive transfer of the Au film and the scanning electron microscope in the back-scattered mode. A thin film of Au is sputtered on the alumina sphere before the indentation with the Al surface. After indentation, the interfaces of the alumina sphere and Al surface are observed by the scanning electron microscope. The contact area can be identified based on both the distributions of the alumina and Au on the alumina sphere and Al surface, respectively. The measured contact area at different nominal pressures are compared to predictions made by several popular theoretical elastic-plastic rough surface contact models.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Bensaad Bourassia ◽  
Bourouga Brahim

Abstract This research deals with the evolution of the structure of the sapphire–brass interface due to the variation of contact pressure. This evolution primarily affects the essential parameters that govern the thermal contact resistance (TCR), namely, the contact point density N, the ratio of real area of contact S*, and the distance d separating the median contact planes. The combination of three measurement techniques, namely, profilometry, imaging, and mechanical characterization, was used for the purpose of investigating the structural variation of the interface. Alternatively, the TCR, which prevails at the interface, was estimated. Thus, the object of our study is to propose an original and new experimental approach allowing at the same time the precise measurement of the TCR and the estimate of the contact parameters of the interface studied constituting input data to the theoretical models of TCR. The estimated values given by these last are then compared with those measured. Through this approach, we try to open new ways of experimentation that would tend to reinforce the effort of TCR modeling. The results obtained showed that the roughness parameters Ra and Rq are independent of loading. The roughness Rp, which is considered equal to d, is sensitive to loading and has the same decreasing behavior under the effect of loading. The determination of S*, using the hardness testing, is even more relevant when the effective hardness Hc is considered. Analysis of data for the estimation of the TCR shows that the comparisons with the reference model (Bardon) attest to the relevance of our approach.


Acoustics ◽  
2019 ◽  
Vol 1 (4) ◽  
pp. 794-807 ◽  
Author(s):  
Alhazmi ◽  
Guldiken

Quantifying bolt tension and ensuring that bolts are appropriately tightened for large-scale civil infrastructures are crucial. This study investigated the feasibility of employing the surface acoustic wave (SAW) for quantifying the bolt tension via finite element modeling. The central hypothesis is that the real area of contact in a bolted joint increases as the tension or preload is increased, causing an acoustical signature change. The experimentally verified 3-D simulations were carried out in two steps: A preload was first applied to the bolt body to simulate the realistic behavior of bolted joint; and the SAW propagation was then excited on the top surface of the plate to reflect from the bolted joint. The bolt tension value was varied between 4 and 24 kN (properly tightened bolt) in the steps of 4 kN to study the effect of the bolt tension. The results indicate an increased reflected wave amplitude and a gradual phase shift, up to 0.5 µs, as the bolt tension increased. Furthermore, the result shows that the distance between the first reflected wave and the source becomes shorter as the preload increases, as hypothesized. A 1.9 mm difference in the distance between the maximum and minimum preload was observed. As part of this study, the simulation results were also compared with the experimental results, and a good agreement between the simulation and experiments was demonstrated.


Author(s):  
C. Mathew Mate ◽  
Robert W. Carpick

This chapter covers how the material around contacting asperities deforms when two surfaces touch and the resulting stresses in the materials. The beginning portion of the chapter is devoted to how these stresses and deformations originate at the atomic level. Next, discussed are the elastic and plastic deformations that can occur when a single asperity contacts a flat surface, such as a Hertzian contact. The discussion of plasticity leads naturally to the discussion of hardness. A major portion of this chapter is devoted to estimating the solid–solid contact area between rough contacting surfaces, which can be due to both elastic and plastic deformations. This discussion of contact area is centered around the Greenwood and Williamson model and the Persson theory of the contact mechanics of rough surfaces.


Author(s):  
C. Mathew Mate ◽  
Robert W. Carpick

This chapter introduces friction as it manifests itself in everyday life. The chapter begins with Amontons’ law (1699) that friction is proportional to the loading force between contacting surfaces (the proportionality constant is called the coefficient of friction). The two primary mechanisms for unlubricated friction are adhesive friction and plowing friction, with the predominant mechanism generally being adhesive friction. Adhesive friction is proportional to the real area of contact; for rough surfaces, this contact area is proportional to the loading force, providing a physical underpinning for Amontons’ law. Processes like the nanoscale flow of atoms and molecules around contact points results in the force needed to induce sliding (static friction) being higher than the force needed to maintain sliding (kinetic friction). Friction decreasing with increasing velocity leads stick-slip motion of the sliding surfaces, where the slip distance can be as short as the distance between atoms.


Lubricants ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 41 ◽  
Author(s):  
Katharina Voelkel ◽  
Markus Rothemund ◽  
Sebastian Albarracin Garibello ◽  
Vincent Kramer ◽  
Hermann Pflaum ◽  
...  

Friction behavior in a sliding contact is strongly influenced by the surface topography of the bodies in contact. This also applies to friction clutches. Even small differences in surface topography may cause significant differences in friction behavior. Thus, it is important to be able to characterize the micro-contact of the rough sliding surfaces, which are, in the case of a clutch, steel plate and friction material. One important measure for the characterization of the micro-contact is the real area of contact. Another important aspect is the contact pattern. The article introduces a method to implement a FEM (Finite Element Method) model from real surface measurements. Real surface topography of the friction pairing is considered. The simulation method is applied to different friction pairings and operating conditions. Computational results with rough and smooth steel plates, new and run-in friction linings, and different nominal surface pressure verify the model. In addition, the results on real area of contact between a steel and a friction plate are compared with published values.


Sign in / Sign up

Export Citation Format

Share Document