Crystal Lattice Models Based on the Close Packing of Spheres

1941 ◽  
Vol 12 (4) ◽  
pp. 206-211 ◽  
Author(s):  
A. L. Patterson
Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2063
Author(s):  
Jiang-Yi Lin ◽  
Ji-Hwei Horng ◽  
Chin-Chen Chang

The (k, n)-threshold reversible secret image sharing (RSIS) is technology that conceals the secret data in a cover image and produces n shadow versions. While k (kn) or more shadows are gathered, the embedded secret data and the cover image can be retrieved without any error. This article proposes an optimal (2, 3) RSIS algorithm based on a crystal-lattice matrix. Sized by the assigned embedding capacity, a crystal-lattice model is first generated by simulating the crystal growth phenomenon with a greedy algorithm. A three-dimensional (3D) reference matrix based on translationally symmetric alignment of crystal-lattice models is constructed to guide production of the three secret image shadows. Any two of the three different shares can cooperate to restore the secret data and the cover image. When all three image shares are available, the third share can be applied to authenticate the obtained image shares. Experimental results prove that the proposed scheme can produce secret image shares with a better visual quality than other related works.


Author(s):  
Paolo Pasini ◽  
Cesare Chiccoli ◽  
Claudio Zannoni

1997 ◽  
Vol 08 (03) ◽  
pp. 547-554 ◽  
Author(s):  
Sigismondo Boschi ◽  
Marco P. Brunelli ◽  
Claudio Zannoni ◽  
Cesare Chiccoli ◽  
Paolo Pasini

The implementation of a Monte Carlo code for simulations of liquid crystal lattice models on the Quadrics massively parallel SIMD supercomputer is described. The use of a Quadrics with 512 processors is proving essential in studying the nematic–isotropic phase transition to an unprecedented level of accuracy using more than 106 particles. Here some tests on the Lebwohl–Lasher model with and without an applied field are presented.


2021 ◽  
Author(s):  
Tao Chen ◽  
Sha Yang ◽  
Qinzhen Li ◽  
Yongbo Song ◽  
Guang Li ◽  
...  

A new Ag70(TBBT)42(TPP)5 nanocluster with a decahedral Ag23 core is reported which show the complex secondary structure of a double helical 4H (DH4H) close packing pattern in its crystal lattice.


1992 ◽  
Vol 03 (06) ◽  
pp. 1209-1220 ◽  
Author(s):  
CESARE CHICCOLI ◽  
PAOLO PASINI ◽  
FRANCO SEMERIA ◽  
CLAUDIO ZANNONI

An example of three-dimensional animation of Monte Carlo simulation results of liquid crystal lattice models is presented. Molecular configurations are obtained from Monte Carlo simulations on a VAX cluster and downloaded to a 486 personal computer. Visualization of molecular organizations and of their change at a phase transition is obtained by suitable colour coding of orientations and of other relevant physical information on the personal computer, and recorded on a VHS system using a genlock card. The animation sequences generated have a twofold interest: they are useful for educational purposes and, from a scientific point of view, they provide a tool for exploring a large amount of data and investigating the phenomena under study in a non-numerical way.


Author(s):  
L.R. Wallenberg ◽  
J.-O. Bovin ◽  
G. Schmid

Metallic clusters are interesting from various points of view, e.g. as a mean of spreading expensive catalysts on a support, or following heterogeneous and homogeneous catalytic events. It is also possible to study nucleation and growth mechanisms for crystals with the cluster as known starting point.Gold-clusters containing 55 atoms were manufactured by reducing (C6H5)3PAuCl with B2H6 in benzene. The chemical composition was found to be Au9.2[P(C6H5)3]2Cl. Molecular-weight determination by means of an ultracentrifuge gave the formula Au55[P(C6H5)3]Cl6 A model was proposed from Mössbauer spectra by Schmid et al. with cubic close-packing of the 55 gold atoms in a cubeoctahedron as shown in Fig 1. The cluster is almost completely isolated from the surroundings by the twelve triphenylphosphane groups situated in each corner, and the chlorine atoms on the centre of the 3x3 square surfaces. This gives four groups of gold atoms, depending on the different types of surrounding.


Sign in / Sign up

Export Citation Format

Share Document