An Overview of Mean Field Theory in Combinatorial Optimization Problems

2004 ◽  
Author(s):  
Suat Kasap
1994 ◽  
Vol 6 (3) ◽  
pp. 341-356 ◽  
Author(s):  
A. L. Yuille ◽  
J. J. Kosowsky

In recent years there has been significant interest in adapting techniques from statistical physics, in particular mean field theory, to provide deterministic heuristic algorithms for obtaining approximate solutions to optimization problems. Although these algorithms have been shown experimentally to be successful there has been little theoretical analysis of them. In this paper we demonstrate connections between mean field theory methods and other approaches, in particular, barrier function and interior point methods. As an explicit example, we summarize our work on the linear assignment problem. In this previous work we defined a number of algorithms, including deterministic annealing, for solving the assignment problem. We proved convergence, gave bounds on the convergence times, and showed relations to other optimization algorithms.


1994 ◽  
Vol 05 (03) ◽  
pp. 229-239 ◽  
Author(s):  
KIICHI URAHAMA ◽  
TADASHI YAMADA

The Potts mean field approach for solving combinatorial optimization problems subject to winner-takes-all constraints is extended for problems subject to additional constraints. Extra variables corresponding to the Lagrange multipliers are incorporated into the Potts formulation for the additional constraints to be satisfied. The extended Potts equations are solved by using constrained gradient descent differential systems. This gradient system is proven theoretically to always produce a legal local optimum solution of the constrained combinatorial optimization problems. An analog electronic circuit implementing the present method is designed on the basis of the previous Potts electronic circuit. The performance of the present method is theoretically evaluated for the constrained maximum cut problems. The lower bound of the cut size obtained with the present method is proven to be the same as that of the basic Potts scheme for the unconstrained maximum cut problems.


1993 ◽  
Vol 3 (3) ◽  
pp. 385-393 ◽  
Author(s):  
W. Helfrich

2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit

Sign in / Sign up

Export Citation Format

Share Document