Series Solutions and Rotationless States of the Vibrating Hydrogen Molecule Ion

1967 ◽  
Vol 46 (2) ◽  
pp. 766-771 ◽  
Author(s):  
Donald K. Harriss
2012 ◽  
Vol 137 (4) ◽  
pp. 044112 ◽  
Author(s):  
Mohsen Vafaee ◽  
Firoozeh Sami ◽  
Babak Shokri ◽  
Behnaz Buzari ◽  
Hassan Sabzyan

1956 ◽  
Vol 34 (10) ◽  
pp. 1372-1381 ◽  
Author(s):  
G. J. Korinek ◽  
J. Halpern

The effects of various complexing agents on the homogeneous reduction of mercuric salts by molecular hydrogen in aqueous solution were determined. In all cases the kinetics suggest that the rate-determining step is a bimolecular reaction between a mercuric ion or complex and a hydrogen molecule, probably leading to the formation of an intermediate mercury atom. The reactivity of various mercuric complexes was found to decrease in the following order: HgSO4 > Hg++ > HgAc2, HgPr2 > HgCl2 > HgBr2 > Hg(EDA)2++. Addition of anions such as OH−, CO3=, Ac−, Pr−, and Cl−, in excess of the amounts required to form stable mercuric complexes, was found to increase the rate. An interpretation of these effects is given.


Sign in / Sign up

Export Citation Format

Share Document