scholarly journals Diffusion on (110) surface of molecular crystal pentaerythritol tetranitrate

2007 ◽  
Vol 90 (10) ◽  
pp. 101906 ◽  
Author(s):  
Jian Wang ◽  
Ted Golfinopoulos ◽  
Richard H. Gee ◽  
Hanchen Huang
CrystEngComm ◽  
2021 ◽  
Author(s):  
Viktor N. Serezhkin ◽  
Anton V. Savchenkov

The universal approach for studying structure/properties relationships shows that every polymorph of galunisertib is characterized with unique noncovalent interactions.


2019 ◽  
Author(s):  
Shengxian Cheng ◽  
Xiaoxia Ma, ◽  
Yonghe He ◽  
Jun He ◽  
Matthias Zeller ◽  
...  

We report a curious porous molecular crystal that is devoid of the common traits of related systems. Namely, the molecule does not rely on directional hydrogen bonds to enforce open packing; and it offers neither large concave faces (i.e., high internal free volume) to frustrate close packing, nor any inherently built-in cavity like in the class of organic cages. Instead, the permanent porosity (as unveiled by the X-ray crystal structure and CO<sub>2</sub> sorption studies) arises from the strong push-pull units built into a Sierpinski-like molecule that features four symmetrically backfolded (<b>SBF</b>) side arms. Each side arm consists of the 1,1,4,4-tetracyanobuta-1,3-diene acceptor (TCBD) coupled with the dimethylaminophenyl donor, which is conveniently installed by a cycloaddition-retroelectrocyclization (CA-RE) reaction. Unlike the poor/fragile crystalline order of many porous molecular solids, the molecule here readily crystallizes and the crystalline phase can be easily deposited into thin films from solutions. Moreover, both the bulk sample and thin film exhibit excellent thermal stability with the porous crystalline order maintained even at 200 °C. The intermolecular forces underlying this robust porous molecular crystal likely include the strong dipole interactions and the multiple C···N and C···O short contacts afforded by the strongly donating and accepting groups integrated within the rigid molecular scaffold.


Polyhedron ◽  
2006 ◽  
Vol 25 (13) ◽  
pp. 2519-2524 ◽  
Author(s):  
J.G. Małecki ◽  
M. Jaworska ◽  
R. Kruszynski

Author(s):  
Tobias Lenz ◽  
Thomas M. Klapötke ◽  
Moritz Mühlemann ◽  
Jörg Stierstorfer

CrystEngComm ◽  
2021 ◽  
Author(s):  
Mikkel Herzberg ◽  
Anders Støttrup Larsen ◽  
Tue Hassenkam ◽  
Anders Østergaard Madsen ◽  
Jukka Rantanen

Solvents can dramatically affect molecular crystals. Obtaining favorable properties for these crystals requires rational design based on molecular level understanding of the solid-solution interface. Here we show how atomic force...


2021 ◽  
Vol 7 (6) ◽  
pp. 77
Author(s):  
Bin Zhang ◽  
Yan Zhang ◽  
Guangcai Chang ◽  
Zheming Wang ◽  
Daoben Zhu

Crystal-to-crystal transformation is a path to obtain crystals with different crystal structures and physical properties. K2[Co(C2O4)2(H2O)2]·4H2O (1) is obtained from K2C2O4·2H2O, CoCl2·6H2O in H2O with a yield of 60%. It is crystallized in the triclinic with space group P1 and cell parameters: a = 7.684(1) Å, b = 9.011(1) Å, c = 10.874(1) Å, α = 72.151(2)°, β = 70.278(2)°, γ = 80.430(2)°, V = 670.0(1) Å3, Z = 2 at 100 K. 1 is composed of K+, mononuclear anion [Co(C2O4)2(H2O)22−] and H2O. Co2+ is coordinated by two bidentated oxalate anion and two H2O in an octahedron environment. There is a hydrogen bond between mononuclear anion [Co(C2O4)2(H2O)22−] and H2O. K2[Co(μ-C2O4)(C2O4)] (2) is obtained from 1 by dehydration. The cell parameters of 2 are a = 8.460(5) Å, b = 6.906 (4) Å, c = 14.657(8) Å, β = 93.11(1)°, V = 855.0(8) Å3 at 100 K, with space group in P2/c. It is composed of K+ and zigzag [Co(μ-C2O4)(C2O42−]n chain. Co2+ is coordinated by two bisbendentate oxalate and one bidentated oxalate anion in trigonal-prism. 1 is an antiferromagnetic molecular crystal. The antiferromagnetic ordering at 8.2 K is observed in 2.


2020 ◽  
Vol 43 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Jonathan O. Bauer

AbstractStructural investigations of molecular crystal solvates can provide important information for the targeted crystallization of particular inclusion compounds. Here, the crystal structure of the first ether solvate of hexaphenyldistannane [(Ph3Sn)2 • 2 THF] is reported. Structural features in terms of host-guest interactions and in the context of the previously reported polymorphs and solvates of (Ph3Sn)2 are discussed.


2021 ◽  
Vol 57 (3) ◽  
pp. 266-273
Author(s):  
Kyrill Yu. Suponitsky ◽  
Aleksei A. Anisimov ◽  
Ivan V. Ananyev ◽  
Alexander A. Lashakov ◽  
Svetlana V. Osintseva ◽  
...  

Author(s):  
Fei Tong ◽  
Daichi Kitagawa ◽  
Ibraheem Bushnak ◽  
Rabih O. Al‐Kaysi ◽  
Christopher J. Bardeen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document