scholarly journals Non-Hamiltonian molecular dynamics implementation of the Gibbs ensemble method. II. Molecular liquid-vapor results for carbon dioxide

2007 ◽  
Vol 126 (16) ◽  
pp. 164105 ◽  
Author(s):  
Christoph Bratschi ◽  
Hanspeter Huber ◽  
Debra J. Searles
2014 ◽  
Vol 16 (29) ◽  
pp. 15289-15298 ◽  
Author(s):  
Pei-Hsing Huang ◽  
Shang-Chao Hung ◽  
Ming-Yueh Huang

We report a multi-component liquid–vapor adsorption study that allowed us to predict the ideal adsorption conditions and to explore the fundamental interaction and adsorption behaviors for formaldehyde, carbon dioxide, carbon monoxide, and water mixtures in GR slit pores.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1711
Author(s):  
Mohamed Ahmed Khaireh ◽  
Marie Angot ◽  
Clara Cilindre ◽  
Gérard Liger-Belair ◽  
David A. Bonhommeau

The diffusion of carbon dioxide (CO2) and ethanol (EtOH) is a fundamental transport process behind the formation and growth of CO2 bubbles in sparkling beverages and the release of organoleptic compounds at the liquid free surface. In the present study, CO2 and EtOH diffusion coefficients are computed from molecular dynamics (MD) simulations and compared with experimental values derived from the Stokes-Einstein (SE) relation on the basis of viscometry experiments and hydrodynamic radii deduced from former nuclear magnetic resonance (NMR) measurements. These diffusion coefficients steadily increase with temperature and decrease as the concentration of ethanol rises. The agreement between theory and experiment is suitable for CO2. Theoretical EtOH diffusion coefficients tend to overestimate slightly experimental values, although the agreement can be improved by changing the hydrodynamic radius used to evaluate experimental diffusion coefficients. This apparent disagreement should not rely on limitations of the MD simulations nor on the approximations made to evaluate theoretical diffusion coefficients. Improvement of the molecular models, as well as additional NMR measurements on sparkling beverages at several temperatures and ethanol concentrations, would help solve this issue.


1968 ◽  
Vol 13 (2) ◽  
pp. 168-171 ◽  
Author(s):  
J. O. Spano ◽  
C. K. Heck ◽  
P. L. Barrick
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document