Flow-induced instability of double-walled carbon nanotubes based on an elastic shell model

2007 ◽  
Vol 102 (4) ◽  
pp. 044307 ◽  
Author(s):  
Y. Yan ◽  
X. Q. He ◽  
L. X. Zhang ◽  
Q. Wang
2013 ◽  
Vol 80 (2) ◽  
Author(s):  
R. Ansari ◽  
B. Arash

In this paper, the vibrational behavior of double-walled carbon nanotubes (DWCNTs) is studied by a nonlocal elastic shell model. The nonlocal continuum model accounting for the small scale effects encompasses its classical continuum counterpart as a particular case. Based upon the constitutive equations of nonlocal elasticity, the displacement field equations coupled by van der Waals forces are derived. The set of governing equations of motion are then numerically solved by a novel method emerged from incorporating the radial point interpolation approximation within the framework of the generalized differential quadrature method. The present analysis provides the possibility of considering different combinations of layerwise boundary conditions. The influences of small scale factor, layerwise boundary conditions and geometrical parameters on the mechanical behavior of DWCNTs are fully investigated. Explicit expressions for the nonlocal frequencies of DWCNTs with all edges simply supported are also analytically obtained by a nonlocal elastic beam model. Some new intertube resonant frequencies and the corresponding noncoaxial vibrational modes are identified due to incorporating circumferential modes into the shell model. A shift in noncoaxial mode numbers, not predictable by the beam model, is also observed when the radius of DWCNTs is varied. The results generated also provide valuable information concerning the applicability of the beam model and new noncoaxial modes affecting the physical properties of nested nanotubes.


NANO ◽  
2012 ◽  
Vol 07 (03) ◽  
pp. 1250018 ◽  
Author(s):  
HESSAM ROUHI ◽  
REZA ANSARI

In this paper, a nonlocal Flugge shell model is utilized to investigate the axial buckling behavior of double-walled carbon nanotubes (DWCNTs) under various boundary conditions. According to the nonlocal elasticity theory, the displacement field equations coupled by the van der Waals interaction are derived. The set of governing equations of motion is then solved by the Rayleigh–Ritz method. The present analysis can treat boundary conditions in a layer-wise manner. The effects of nonlocal parameter, layer-wise boundary conditions and geometrical parameters on the mechanical behavior of DWCNTs are examined. Furthermore, molecular dynamics simulations are performed to assess the validity of the results and also to predict the appropriate values of nonlocal parameter. It is found that the type of boundary conditions affects the proper value of nonlocal parameter.


2021 ◽  
Vol 7 (3) ◽  
pp. 61
Author(s):  
Matteo Strozzi ◽  
Oleg V. Gendelman ◽  
Isaac E. Elishakoff ◽  
Francesco Pellicano

The applicability and limitations of simplified models of thin elastic circular cylindrical shells for linear vibrations of double-walled carbon nanotubes (DWCNTs) are considered. The simplified models, which are based on the assumptions of membrane and moment approximate thin-shell theories, are compared with the extended Sanders–Koiter shell theory. Actual discrete DWCNTs are modelled by means of couples of concentric equivalent continuous thin, circular cylindrical shells. Van der Waals interaction forces between the layers are taken into account by adopting He’s model. Simply supported and free–free boundary conditions are applied. The Rayleigh–Ritz method is considered to obtain approximate natural frequencies and mode shapes. Different aspect and thickness ratios, and numbers of waves along longitudinal and circumferential directions, are analysed. In the cases of axisymmetric and beam-like modes, it is proven that membrane shell theory, differently from moment shell theory, provides results with excellent agreement with the extended Sanders–Koiter shell theory. On the other hand, in the case of shell-like modes, it is found that both membrane and moment shell theories provide results reporting acceptable agreement with the extended Sanders–Koiter shell theory only for very limited ranges of geometries and wavenumbers. Conversely, for shell-like modes it is found that a newly developed, simplified shell model, based on the combination of membrane and semi-moment theories, provides results in satisfactory agreement with the extended Sanders–Koiter shell theory in all ranges.


2010 ◽  
Vol 77 (4) ◽  
Author(s):  
Hui-Shen Shen ◽  
Chen-Li Zhang

Buckling and post-buckling analysis is presented for axially compressed double-walled carbon nanotubes (CNTs) embedded in an elastic matrix in thermal environments. The double-walled carbon nanotube is modeled as a nonlocal shear deformable cylindrical shell, which contains small scale effects and van der Waals interaction forces. The surrounding elastic medium is modeled as a tensionless Pasternak foundation. The post-buckling analysis is based on a higher order shear deformation shell theory with the von Kármán–Donnell-type of kinematic nonlinearity. The thermal effects are also included and the material properties are assumed to be temperature-dependent and are obtained from molecular dynamics (MD) simulations. The nonlinear prebuckling deformations of the shell and the initial local point defect, which is simulated as a dimple on the tube wall, are both taken into account. A singular perturbation technique is employed to determine the post-buckling response of the tubes and an iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region between the tube and the elastic medium. The small scale parameter e0a is estimated by matching the buckling loads of CNTs observed from the MD simulation results with the numerical results obtained from the nonlocal shear deformable shell model. Numerical solutions are presented to show the post-buckling behavior of CNTs surrounded by an elastic medium of conventional and tensionless Pasternak foundations. The results show that buckling and post-buckling behavior of CNTs is very sensitive to the small scale parameter e0a. The results reveal that the unilateral constraint has a significant effect on the post-buckling response of CNTs when the foundation stiffness is sufficiently large.


Sign in / Sign up

Export Citation Format

Share Document