scholarly journals Publisher's Note: “Synergic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity” [J. Appl. Phys. 104, 104917 (2008)]

2009 ◽  
Vol 105 (12) ◽  
pp. 129903 ◽  
Author(s):  
Jinsong Leng ◽  
Haibao Lv ◽  
Yanju Liu ◽  
Shanyi Du
2020 ◽  
Vol 12 (5) ◽  
pp. 652-658 ◽  
Author(s):  
Yong-Kun Wang ◽  
Liang-Chao Wang ◽  
Yu-Ting Zhang ◽  
Jun-Jie Ye ◽  
Yang Shi ◽  
...  

An electro-activated type shape memory cyanate ester-epoxy (CE-EP) composites containing short carbon fiber (SCF) and carbon black (CB) were fabricated, where SCF linked among CB particles to make the superior conductivity network in compositions. In the compositions, the content of CB was fixed at 5 wt%, while the amount of SCF was ranged from 0 to 0.9 wt%. The synergistic effects of SCF and CB on the mechanical properties test, electrical properties, SEM, DMA and the electro-activated type shape memory experiment was reviewed. The outcomes showed that when the parts of SCF is less than 0.9%, the mechanical properties and storage modulus of required compositions expand with the content of the SCF growth. But, when the SCF content reaches 0.9 wt%, the flexural strength and storage modulus of the compositions decrease slightly. With the growth of SCF content, the glass transformation temperature increases from 89 °C to 103 °C and the resistivity of the composites decreases gradually. The resistivity of the composites is only 7.37 Ω/cm with 0.9 wt% of SCF. Further, the thermal response speed and shape convalescence rate of the compositions increase greatly with the growth of SCF content.


2015 ◽  
Vol 813 ◽  
pp. 250-257 ◽  
Author(s):  
Zhen Qing Wang ◽  
Jian Ming Guo ◽  
Xiao Jun Tang ◽  
Lu Zhang ◽  
Wen Yan Liang

Shape memory polymers (SMPs) have drawn wide attention of many researchers for its potential applications to shipping industry, aerospace, bionics engineering and mechanical engineering. Shape memory polymers composites (SMPCs) have ability to improve the properties and obtain attain new functions of shape memory polymers. In this paper, trans-1, 4-polyisoprene reinforced by carbon fiber is developed to improve the mechanical weakness of trans-1, 4-polyisoprene bulk. Composites with carbon fiber weight fraction of 5%, 10%, and 15% are fabricated by casting samples with an average length of 2 mm. The mechanical property of the trans-1, 4-polyisoprene reinforced by short carbon fiber is evaluated and the effects of short carbon fiber on shape memory behavior are investigated. The results indicate that there is an optimum fiber weight fraction between 5 and 15 wt% where exists an extremely low recovery ratio, re-crystallizing temperatures (Tc) and an extremely high tensile stress.


2020 ◽  
Vol 40 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Tianning Ren ◽  
Guangming Zhu ◽  
Yi Liu ◽  
Xiao Hou

AbstractThe objective of this work is to investigate the thermomechanical, electrical, and shape-memory properties of bisphenol A-type cyanate ester (BACE)/polybutadiene epoxy (PBEP)/carbon black (CB) composite and assess its feasibility applied for deployable structure. Using a BACE/PBEP polymer as matrix and superconducting carbon black (CB) and short carbon fibers (SCFs) as reinforcing material, the shape memory composite was prepared by compression molding. The effects of CB and SCF content on the shape memory properties of the composites were investigated. The results demonstrate that the glass transition temperature (Tg) and the storage modulus of the composites increases as SCFs content increase. Because of the synergic effect of CB and SCFs, the shape memory composites exhibit excellent shape memory performance, and the shape recovery ratio is about 100%. With the increase in SCF content, the recovery time decreased, and the volume electrical resistivity of the composite could decrease by adding a small amount of SCFs. According to the above results, a shape memory polymer composite deployable structure was prepared.


Sign in / Sign up

Export Citation Format

Share Document