An investigation on electro-induced shape memory performances of CE/EP/CB/SCF composites applied for deployable structure

2020 ◽  
Vol 40 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Tianning Ren ◽  
Guangming Zhu ◽  
Yi Liu ◽  
Xiao Hou

AbstractThe objective of this work is to investigate the thermomechanical, electrical, and shape-memory properties of bisphenol A-type cyanate ester (BACE)/polybutadiene epoxy (PBEP)/carbon black (CB) composite and assess its feasibility applied for deployable structure. Using a BACE/PBEP polymer as matrix and superconducting carbon black (CB) and short carbon fibers (SCFs) as reinforcing material, the shape memory composite was prepared by compression molding. The effects of CB and SCF content on the shape memory properties of the composites were investigated. The results demonstrate that the glass transition temperature (Tg) and the storage modulus of the composites increases as SCFs content increase. Because of the synergic effect of CB and SCFs, the shape memory composites exhibit excellent shape memory performance, and the shape recovery ratio is about 100%. With the increase in SCF content, the recovery time decreased, and the volume electrical resistivity of the composite could decrease by adding a small amount of SCFs. According to the above results, a shape memory polymer composite deployable structure was prepared.

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 807 ◽  
Author(s):  
Lin Xia ◽  
Han Gao ◽  
Weina Bi ◽  
Wenxin Fu ◽  
Guixue Qiu ◽  
...  

Shape memory composites of trans-1,4-polyisoprene (TPI) and low-density polyethylene (LDPE) with easily achievable transition temperatures were prepared by a simple physical blending method. Carbon black (CB) was introduced to improve the mechanical properties of the TPI/LDPE composites. The mechanical, cure, thermal and shape memory properties of the TPI/LDPE/CB composites were investigated in this study. In these composites, the crosslinked network generated in both the TPI and LDPE portions acted as a fixed domain, while the crystalline regions of the TPI and LDPE portions acted as a reversible domain in shape memory behavior. We found the mechanical properties of composites were promoted significantly with an increase of CB content, accompanied with the deterioration of shape memory properties of composites. When CB dosage was 5 parts per hundred of rubber composites (phr), best shape memory property of composites was obtained with a shape fixity ratio of 95.1% and a shape recovery ratio of 95.0%.


2015 ◽  
Vol 44 (4) ◽  
pp. 224-231 ◽  
Author(s):  
Haibao Lu ◽  
Yongtao Yao ◽  
Long Lin

Purpose – This paper aims to create and to study multifunctional shape memory polymer (SMP) composites having temperature-sensing and actuating capabilities by embedding thermochromic particles within the polymer matrix. Design/methodology/approach – The multifunctional materials were fabricated following a process consisting of blending (of the thermochromic particles and the SMP at various ratios), mixing, degasing, moulding and thermal curing, prepared by incorporating thermochromic particles within the polymer. The effect of the thermochromic particles on the thermomechanical properties and thermally responsive shape memory effect of the resulting multifunction SMP composites were characterised and interpreted. Findings – It was found that exposure of the composites to temperatures above 70°C led to a pronounced change of their colour that was recorded by the thermal and electrical actuation approaches and was reproducibly reversible. It was also found that the colour of the composites was independent of the mechanical state of the SMP. Such effects enabled monitoring of the onset of the set/release temperature of the SMP matrix. Furthermore, the combination of thermochromic additive and the SMP resulted in significantly improved thermomechanical strength, absorption of infrared radiation and the temperature distribution of the SMP composites. Research limitations/implications – The temperature-sensing and actuating capabilities of the polymeric shape memory composites developed through this study will help to extend the field of potential applications of such composites to fields including sensors, actuators, security labels and information dissemination, where colour indication is an advantageous feature. Originality/value – The SMP composites capable of temperature sensing and actuating are novel.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1234 ◽  
Author(s):  
Hongjie Bi ◽  
Min Xu ◽  
Gaoyuan Ye ◽  
Rui Guo ◽  
Liping Cai ◽  
...  

In this study, a series of heat-induced shape memory composites was prepared by the hot-melt extrusion and three-dimensional (3D) printing of thermoplastic polyurethane (TPU) using wood flour (WF) with different contents of EPDM-g-MAH. The mechanical properties, microtopography, thermal property analysis, and heat-induced shape memory properties of the composites were examined. The results showed that, when the EPDM-g-MAH content was 4%, the tensile elongation and tensile strength of the composites reached the maximum value. The scanning electron microscopy and dynamic mechanical analysis results revealed a good interface bonding between TPU and WF when the EPDM-g-MAH content was 4%. The thermogravimetric analysis indicated that the thermal stability of TPU/WF composites was enhanced by the addition of 4% EPDM-g-MAH. Heat-induced shape memory test results showed that the shape memory performance of composites with 4% EPDM-g-MAH was better than that of unmodified-composites. The composites’ shape recovery performance at a temperature of 60 °C was higher than that of the composites at ambient temperature. It was also found that, when the filling angle of the specimen was 45°, the recovery angle of the composites was larger.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1107
Author(s):  
Mijeong Kim ◽  
Seongeun Jang ◽  
Sungwoong Choi ◽  
Junghoon Yang ◽  
Jungpil Kim ◽  
...  

Shape memory polymers (SMPs) are attracting attention for their use in wearable displays and biomedical materials due to their good biocompatibility and excellent moldability. SMPs also have the advantage of being lightweight with excellent shape recovery due to their low density. However, they have not yet been applied to a wide range of engineering fields because of their inferior physical properties as compared to those of shape memory alloys (SMAs). In this study, we attempt to find optimized shape memory polymer composites. We also investigate the shape memory performance and physical properties according to the filler type and amount of hardener. The shape memory composite was manufactured by adding nanocarbon materials of graphite and non-carbon additives of Cu. The shape-recovery mechanism was compared, according to the type and content of the filler. The shape fixation and recovery properties were analyzed, and the physical properties of the shape recovery composite were obtained through mechanical strength, thermal conductivity and differential scanning calorimetry analysis.


2017 ◽  
Vol 28 (17) ◽  
pp. 2363-2371 ◽  
Author(s):  
M Sendil Murugan ◽  
Sandhya Rao ◽  
MC Chiranjeevi ◽  
A Revathi ◽  
Kavitha V Rao ◽  
...  

A shape memory polymer is capable of multifunctional performance, be it structural or non-structural. Several actuation mechanisms can be employed to trigger shape memory behaviour. Among these, thermal actuation is most comprehensively studied and applied due to its ease of understanding and utility. However, from the point of view of some niche applications, electrical actuation also needs to be examined. This is all the more relevant for modern aircraft where actuation is amenable to remote computer controls and advanced instrumentation. This in turn paves the way for realizing lightweight and adaptive aircraft structures. In this work, shape memory performance via electrical actuation of unidirectional carbon ply–epoxy shape memory polymer composites has been investigated using an in-house designed test set-up in the manual and automated modes. The synergistic role of carbon plies and the epoxy shape memory polymer matrix for realizing faster shape recovery has been observed. The effect of number of carbon plies on the cyclic shape memory performance of the shape memory polymer composite has also been evaluated. This work demonstrates the feasibility of developing efficient electrically actuated shape memory composites and their potential for different applications.


2008 ◽  
Vol 47-50 ◽  
pp. 714-717 ◽  
Author(s):  
Xin Lan ◽  
Jin Song Leng ◽  
Yan Ju Liu ◽  
Shan Yi Du

A new system of thermoset styrene-based shape-memory polymer (SMP) filled with carbon black (CB) is investigated. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3% (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB(10 vol%) can be realized in about 100s. In addition, the thermomechanical properties are also characterized by differential scanning calorimetery (DSC).


Sign in / Sign up

Export Citation Format

Share Document