Strain screening by mobile oxygen vacancies in SrTiO3

2010 ◽  
Vol 96 (25) ◽  
pp. 251901 ◽  
Author(s):  
Yongsam Kim ◽  
Ankit S. Disa ◽  
Timur E. Babakol ◽  
Joel D. Brock
Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5596
Author(s):  
Marina Tyunina

The excellent electro-mechanical properties of perovskite oxide ferroelectrics make these materials major piezoelectrics. Oxygen vacancies are believed to easily form, migrate, and strongly affect ferroelectric behavior and, consequently, the piezoelectric performance of these materials and devices based thereon. Mobile oxygen vacancies were proposed to explain high-temperature chemical reactions half a century ago. Today the chemistry-enabled concept of mobile oxygen vacancies has been extrapolated to arbitrary physical conditions and numerous effects and is widely accepted. Here, this popular concept is questioned. The concept is shown to conflict with our modern physical understanding of ferroelectrics. Basic electronic processes known from mature semiconductor physics are demonstrated to explain the key observations that are groundlessly ascribed to mobile oxygen vacancies. The concept of mobile oxygen vacancies is concluded to be misleading.


2015 ◽  
Vol 3 (20) ◽  
pp. 11048-11056 ◽  
Author(s):  
Yifei Sun ◽  
Jianhui Li ◽  
Yimin Zeng ◽  
Babak Shalchi Amirkhiz ◽  
Mengni Wang ◽  
...  

Introduction of A-site deficiency on Ni-doped LaSrCrO3 anodes helps form highly mobile oxygen vacancies and remarkably enhances Ni nanoparticle reducibility, and significantly increases electronic conductivity and catalytic activity.


Author(s):  
Peter M. Csernica ◽  
Samanbir S. Kalirai ◽  
William E. Gent ◽  
Kipil Lim ◽  
Young-Sang Yu ◽  
...  

2016 ◽  
Vol 8 (50) ◽  
pp. 34590-34597 ◽  
Author(s):  
Chen Ge ◽  
Kui-juan Jin ◽  
Qing-hua Zhang ◽  
Jian-yu Du ◽  
Lin Gu ◽  
...  

Author(s):  
T. A. Epicier ◽  
G. Thomas

Mullite is an aluminium-silicate mineral of current interest since it is a potential candidate for high temperature applications in the ceramic materials field.In the present work, conditions under which the structure of mullite can be optimally imaged by means of High Resolution Electron Microscopy (HREM) have been investigated. Special reference is made to the Atomic Resolution Microscope at Berkeley which allows real space information up to ≈ 0.17 nm to be directly transferred; numerous multislice calculations (conducted with the CEMPAS programs) as well as extensive experimental through-focus series taken from a commercial “3:2” mullite at 800 kV clearly show that a resolution of at least 0.19 nm is required if one wants to get a straightforward confirmation of atomic models of mullite, which is known to undergo non-stoichiometry associated with the presence of oxygen vacancies.Indeed the composition of mullite ranges from approximatively 3Al2O3-2SiO2 (referred here as 3:2-mullite) to 2Al2O3-1SiO2, and its structure is still the subject of refinements (see, for example, refs. 4, 5, 6).


2019 ◽  
Vol 29 (2) ◽  
pp. 189 ◽  
Author(s):  
Tho Truong Nguyen ◽  
Thi Minh Cao ◽  
Hieu Van Le ◽  
Viet Van Pham

The black TiO\(_2\) with substantial Ti\(^3+\) and oxygen vacancies exhibit an excellent photoelectrochemical water-splitting performance due to the improved charge transport the extended visible light response. In this study, black TiO\(_2\) nanotube arrays synthesized by the anodization method, and then, they have been investigated some characterizations by spectroscopic methods such as UV-visible reflectance (UV-vis DRS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and photoluminescence spectrum. The results showed that some highlighted properties of the black TiO2 nanotube arrays and they could apply for water-splitting effect.


2020 ◽  
Author(s):  
Damir R. Islamov ◽  
Vladimir A. Gritsenko ◽  
Timofey V. Perevalov ◽  
Vladimir Sh. Aliev ◽  
Alexander P. Yelisseyev ◽  
...  

2020 ◽  
Vol 4 (7) ◽  
pp. 3726-3731
Author(s):  
Fenghui Ye ◽  
Jinghui Gao ◽  
Yilin Chen ◽  
Yunming Fang

Electroreduction of CO2 into value-added products is a promising technique in which the structure of the catalyst plays a crucial role.


Sign in / Sign up

Export Citation Format

Share Document