aluminium silicate
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 29)

H-INDEX

16
(FIVE YEARS 1)

e-Polymers ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 87-98
Author(s):  
Kilole Tesfaye Chaka

Abstract Polypropylene (PP) undergoes fast crystallization and resulting in rigorous shrinkage when it is subjected to high temperature likewise of the fused deposition modeling (FDM) process. This research study focuses on the investigation of the processing parameters and factors that decrease the warpage of PP during the FDM process. Aluminium silicate dihydrate (K) microparticles of different ratios were melt blended with PP by a twin-screw extruder, and filaments of about 1.7 mm diameter were extruded in a single screw extruder. Then, the extruded filaments were used to fabricate the dumbbells structure through the FDM process. The effects of optimizing the fused deposition temperature, coating the chamber with thick papers/fabrics, and coating a printer bed with PP material were also investigated in this study. Scanning and transmission electron microscopy, differential scanning calorimetry, melt flow, and mechanical properties testing instruments are used to analyze the microparticles dispersion, crystallization, flow, and mechanical properties of resulting samples. Uniformly dispersed filler and increased printing chamber temperature result in an increase of crystallization temperature and improve the dimensional accuracy of fused deposited specimens. The fused deposited PP-K10 wt% composite showed an improvement of up to 32% in tensile modulus compared to the neat PP.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ulrike Brueckner ◽  
Anne S. Schulze ◽  
Dirk Walter ◽  
Marian Kampschulte ◽  
Joachim Schneider

Abstract Background Refractory Ceramic fibres (RCF) are man-made mineral fibres used in high performance thermal insulation applications. Analogous to asbestos fibres, RCF are respirable, show a pleural drift and can persist in human lung tissue for more than 20 years after exposure. Pleural changes such as localised or diffuse pleural thickening as well as pleural calcification were reported. Result A 45 years old man worked in high performance thermal insulation applications using refractory ceramic fibres (RCF) for almost 20 years. During a occupational medical prophylaxis to ensure early diagnosis of disorders caused by inhalation of aluminium silicate fibres with X-ray including high-resolution computed tomography (HRCT), bilateral pleural thickening was shown and a pleural calcification next to a rounded atelectasis was detected. Asbestos exposure could be excluded. In pulmonary function test a restrictive lung pattern could be revealed. In work samples scanning electron microscopy (SEM) including energy dispersive X-ray analysis (EDX) classified used fibres as aluminium silicate fibres. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) showed crystalline as well as amorphous fibres. Conclusions A comprehensive lung function analysis and in case of restrictive lung disorders additional CT scans are needed in RCF exposed workers in accordance to the guidelines for medical occupational examinations comparable to asbestos exposed workers.


2021 ◽  
Author(s):  
◽  
Handayani Fraser

<p>Efforts to remove excess nitrate in the groundwater typically involves expensive ion-exchange membranes or slow reacting bio-reactors. Nano-sized zero valent iron (nZVI) has been used successfully to reduce nitrate into ammonia in various sites in USA and Europe. However, nZVI has a number of major setbacks associated with it, namely the tendency to agglomerate due to magnetic properties, and the possible toxicity due to the nano-sized material.  To circumvent these two setbacks, nZVI could be adsorbed onto solid support. In this research, geothermal sediment microsilicate 600 (Misi) was utilised as a support. Initial results suggested that Misi has potential as a support for nZVI, however modifications were required to improve the adsorbance of nZVI onto Misi surface. Calcination, activation, acid wash and iron oxyhydroxide coating were used as surface modifications for Misi. It was found that the two most important modifications for nZVI adsorption was calcination at either 400 or 600 °C and acid washing in 5.6 M HCl.  Equipped with this knowledge, other silica and silicates were also used to adsorb nZVI. For pure silica surfaces, 3-APTES and 3-TPTMS ligands and pore enlarging methods of calcination of porogen and salt wash were also used. nZVI was not able to be fully adsorbed on pure silica surfaces. Four other silicates were examined: Rice husk ash, Western Australia silica fume, Mt Piper fly ash, and precipitated aluminium silicate. Of these, only Western Australia silica fume and precipitated aluminium silicate showed potential as nZVI support. Based on the SEM-EDS XRD data of all the silica and silicates, it could be tentatively concluded that nZVI requires an aluminium silicate surface for successful adsorption. Aluminium silicate surfaces typically has an exchangeable cation present, and this cation might play a part in nZVI adsorption.  The nZVI/Misi surface was then utilised to reduce nitrate. It was discovered that even though activation and FeOOH did not play a part in nZVI adsorption onto Misi surface, these two steps were important in reduction of nitrate, as the presence of activation and FeOOH increase the reduction of nitrate significantly within 60 minutes. The Misi-supported nZVI were also shown to be more stable in dispersion, and less agglomerated as shown in a sand column experiment.</p>


2021 ◽  
Author(s):  
◽  
Handayani Fraser

<p>Efforts to remove excess nitrate in the groundwater typically involves expensive ion-exchange membranes or slow reacting bio-reactors. Nano-sized zero valent iron (nZVI) has been used successfully to reduce nitrate into ammonia in various sites in USA and Europe. However, nZVI has a number of major setbacks associated with it, namely the tendency to agglomerate due to magnetic properties, and the possible toxicity due to the nano-sized material.  To circumvent these two setbacks, nZVI could be adsorbed onto solid support. In this research, geothermal sediment microsilicate 600 (Misi) was utilised as a support. Initial results suggested that Misi has potential as a support for nZVI, however modifications were required to improve the adsorbance of nZVI onto Misi surface. Calcination, activation, acid wash and iron oxyhydroxide coating were used as surface modifications for Misi. It was found that the two most important modifications for nZVI adsorption was calcination at either 400 or 600 °C and acid washing in 5.6 M HCl.  Equipped with this knowledge, other silica and silicates were also used to adsorb nZVI. For pure silica surfaces, 3-APTES and 3-TPTMS ligands and pore enlarging methods of calcination of porogen and salt wash were also used. nZVI was not able to be fully adsorbed on pure silica surfaces. Four other silicates were examined: Rice husk ash, Western Australia silica fume, Mt Piper fly ash, and precipitated aluminium silicate. Of these, only Western Australia silica fume and precipitated aluminium silicate showed potential as nZVI support. Based on the SEM-EDS XRD data of all the silica and silicates, it could be tentatively concluded that nZVI requires an aluminium silicate surface for successful adsorption. Aluminium silicate surfaces typically has an exchangeable cation present, and this cation might play a part in nZVI adsorption.  The nZVI/Misi surface was then utilised to reduce nitrate. It was discovered that even though activation and FeOOH did not play a part in nZVI adsorption onto Misi surface, these two steps were important in reduction of nitrate, as the presence of activation and FeOOH increase the reduction of nitrate significantly within 60 minutes. The Misi-supported nZVI were also shown to be more stable in dispersion, and less agglomerated as shown in a sand column experiment.</p>


Dose-Response ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 155932582110666
Author(s):  
Muhammad Junaid Asif ◽  
Muhammad Tariq Javed ◽  
Aziz ur Rehman ◽  
Farkhanda Manzoor ◽  
Muhammad Riaz ◽  
...  

The poultry sector is one of the most vibrant segments of the agriculture industry of Pakistan. In addition to different infections, ammonia (NH3) production from litter material of broiler is the most harmful pollutant and causes serious threats for the environment. To overcome this problem, different methods are proposed assuring poultry bird’s health and production. This study was carried out to evaluate the effect of toxic levels of NH3 on the haematology and serum proteins of broiler birds and its amelioration by using different modifiers. The recovery of Escherichia coli ( E. coli) from liver and spleen of broiler birds was also carried out. A total of 100 birds were divided into 5 separate groups (groups A–D). The groups C, D and E were treated with potassium aluminium sulphate, aluminium silicate and Yucca schidigera plant extract, respectively. Blood and tissue samples were collected after slaughtering the birds at 42 days of age. This study revealed increased RBC, total leucocyte count, Hb and heterophils percentage. Serum proteins were decreased in Yucca-treated and potassium aluminium sulphate–treated groups. This study concluded that NH3 production was reduced by the application of different modifiers, and these modifiers also neutralized the changes in blood parameters induced by NH3.


2021 ◽  
Vol 147 ◽  
pp. 106521
Author(s):  
Andre Baldermann ◽  
Veronika Preissegger ◽  
Sanja Šimić ◽  
Ilse Letofsky-Papst ◽  
Florian Mittermayr ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 753
Author(s):  
Eduard N. Sirjita ◽  
Laurentiu Rusen ◽  
Simona Brajnicov ◽  
Cristina Craciun ◽  
Valentin Ion ◽  
...  

We report on the deposition and characterization of hafnium silicate and aluminium silicate thin films for different applications in optics and electronics. Pulsed laser deposition in a controllable oxygen atmosphere was used as a processing technique, with optimized parameters in terms of laser wavelength, laser fluence and oxygen pressure. The thin films were investigated using atomic force microscopy, spectroscopic ellipsometry, UV–VIS spectroscopy and X-ray photoelectron spectroscopy. The morphological investigations evidenced uniform layers with low roughness (in the order of nanometres). The optical investigations revealed that aluminium silicate layers with low roughness and low absorption in the infrared (IR) range can be obtained at high substrate temperatures (600 °C). The behaviour of the silicate thin films with respect to the nanosecond IR laser irradiation revealed that aluminium silicate layers have higher laser-induced damage threshold values in comparison with hafnium silicate.


2021 ◽  
pp. 117-119
Author(s):  
Sreeja Bopin ◽  
Kalavati Prajapati

Soil fertility and plant nutrition require an adequate management of essential macronutrients such as potassium (K) is mandatory for plant development. Potassium replenishment, particularly in smallholder agriculture, remains a challenge as it is mainly fertilizer dependent. While the user of soluble mineral potassium fertilizers is the obvious best means to combat potassium deficiency in soil, they were limited by high cost of fertilizers and availability at farmer's level. This research is to isolate and select potassium solubilizing soil Actinomycetes from ceramic industry soils. 22 Actinomycetes isolates were inoculated on Aleksandrov agar supplemented with 0.5% potassium aluminium silicate, isolates which gave the high ratio of clear zone were selected. Out of 22 Actinomycetes Isolates two (KSA 09 and KSA 16) were selected which gave highest solubilization in liquid medium by solubilizing insoluble potassium source i.e. feldspar. This two strain selected for further studies for future prospectus.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ana-Maria Totea ◽  
Irina Dorin ◽  
Peter R. Laity ◽  
Barbara R. Conway ◽  
Laura Waters ◽  
...  

: This study reports the use of Isothermal Calorimetry (ITC) in understanding the complexation process occurring between Magnesium Aluminium Silicate (MAS) and metformin hydrochloride (MET), as a potential controlled release drug delivery system. The calorimetric results confirmed the binding between MET and MAS at various pHs (5, 7 and 9) and temperatures (25 ºC and 37 ºC). The overall change in enthalpy was found to be exothermic with a comparatively small entropic contribution to the total change in Gibbs free energy, implying that the binding was an enthalpically driven process. These findings suggest that the binding process was dominated by hydrogen bonding and electrostatic interactions. pH and temperature variation did not have a great impact on the binding, as observed from the similarity in enthalpy (ΔH), entropy (ΔS) or Gibbs free energy (ΔG), with the reaction being only slightly more exothermic at pH 5 and at 37 ºC. MAS and MET complex dispersions and particles were also formulated and analysed successfully using DSC, XRPD, ATR-FTIR, SEM/EDX, digital microscopy. 2D-SAXS. 2D-SAXS was able to differentiate between MAS particulates and MAS-MET complexes when analysed in their liquid form suggesting the importance of appropriate methodology and instrumentation used in characterisation.


Author(s):  
R. Matura ◽  
V. Bahuguna ◽  
M. Bhandari ◽  
I. Thapa ◽  
S. Jain

Background: Bio-fertilizers are the substances which contain living microorganisms, when applied to soil, seeds and plant root these fertilizers increases soil fertility and promote growth of the plant. Biofertilizers help plants to utilize important mineral resources, phosphorous and nitrogen. Microorganisms like Rhizobacteria, fungi and algae which provide nutrient to the soil and which are produced commercially are known as biofertilizers. The microorganisms which present in biofertilizers are Rhizobium species, Pseudomonas species and Azospirillum species etc. These biofertilizers have potential to replace conventional chemical fertilizers. The quality of biofertilizers is utmost important as they have to be used by farmers and should work well when applied to the soil. It should not form clumps after preparation. In this study, anticaking property provided by tricalcium phosphate (TCP) to individual biofertilizer containing Pseudomonas, Rhizobium and Azospirillum respectively (each separately) was studied. Methods: In our study, we have used serial dilution and direct count method (CFU) for checking viability of live microorganism for 15, 30 and 90 days duration in respective biofertilizers in our laboratory. Different percentage viz 5%, 10%, 15% and 20% of tricalcium phosphate (TCP) was used in addition to aluminium silicate as an inert carrier.Conclusion: Our study has validated that all percentage (5%, 10%, 15% and 20%) of tricalcium phosphate (TCP) is reducing clump formation as compared to control with no TCP added. On the basis of plate count method (CFU result) 10% TCP is found to be optimum to be used as an anticaking agent for biofertilizer containing Pseudomonas, Rhizobium and Azospirillum respectively.


Sign in / Sign up

Export Citation Format

Share Document