Determinant role of tunneling resistance in electrical conductivity of polymer composites reinforced by well dispersed carbon nanotubes

2010 ◽  
Vol 108 (8) ◽  
pp. 084319 ◽  
Author(s):  
Y. Yu ◽  
G. Song ◽  
L. Sun
2018 ◽  
Vol 44 (4) ◽  
pp. 4508-4511 ◽  
Author(s):  
Aminul Islam ◽  
Biswajyoti Mukherjee ◽  
M. Sribalaji ◽  
O.S. Asiq Rahman ◽  
P. Arunkumar ◽  
...  

MRS Bulletin ◽  
2007 ◽  
Vol 32 (4) ◽  
pp. 348-353 ◽  
Author(s):  
Karen I. Winey ◽  
Takashi Kashiwagi ◽  
Minfang Mu

AbstractThe remarkable electrical and thermal conductivities of isolated carbon nanotubes have spurred worldwide interest in using nanotubes to enhance polymer properties. Electrical conductivity in nanotube/polymer composites is well described by percolation, where the presence of an interconnected nanotube network corresponds to a dramatic increase in electrical conductivity ranging from 10−5 S/cm to 1 S/cm. Given the high aspect ratios and small diameters of carbon nanotubes, percolation thresholds are often reported below 1 wt% although nanotube dispersion and alignment strongly influence this value. Increases in thermal conductivity are modest (∼3 times) because the inter facial thermal re sis tance between nanotubes is considerable and the thermal conductivity of nanotubes is only 104 greater than the polymer, which forces the matrix to contribute more toward the composite thermal conductivity, as compared to the contrast in electrical conductivity, >1014. The nanotube network is also valuable for improving flame-retardant efficiency by producing a protective nanotube residue. In this ar ticle, we highlight published research results that elucidate fundamental structure–property relationships pertaining to electrical, thermal, and/or flammability properties in numerous nanotube-containing polymer composites, so that specific applications can be targeted for future commercial success.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Martin Michálek ◽  
Michael Bredol

Functionalized and raw multiwall carbon nanotubes (MWCNTs) were investigated colloid-chemically in order to study the role of polar versus nonpolar interaction with a polyurethane (PU) matrix. Both kinds of MWCNTs were dispersed by ultrasonication in the presence of a surfactant (sodium dodecyl sulphate) in aqueous solution. Functional groups on the nanotube surface were characterized by infrared spectroscopy and by theζ-potential in aqueous suspension. Such suspensions were added to waterborne PU dispersions, drop-cast on glass substrates and cured. The percolation threshold for electrical conductivity with polar (functionalized) MWCNTs was reached at 0.24 wt.%, whereas at concentrations as high as 2 wt.%, PU films with nonpolar MWCNTs stayed below the percolation threshold. With an addition of 0.4 wt.% polar MWCNTs, the electrical conductivity increased to >10−6 S/cm in the cured coating layer. These results are interpreted with respect to the chemical nature of the PU matrix.


2015 ◽  
Vol 07 (01) ◽  
pp. 1550005 ◽  
Author(s):  
Chuang Feng ◽  
Liying Jiang

In this paper, the bi-axial stretching effects on the electrical conductivity of carbon nanotube (CNT)-polymer composites are studied by a mixed micromechanics model with the consideration of the electrical conductive mechanisms. The bi-axial stretching effects are characterized by volume expansion of composite, re-orientation of CNTs and change of conductive networks. Simulation results demonstrate that the bi-axial stretching decreases the electrical conductivity of the composites due to the dominant role of the stretching-induced change in conductive networks, i.e., the increase in the percolation threshold, the separation distance among CNTs and the breakdown of the networks. It is also found that the bi-axial stretching enhances the decreasing rate of the electrical conductivity and increases the distribution randomness of the CNTs in the bi-axial stretching plane, as compared to a uni-axial stretching case. Furthermore, the dependency of the variation of electrical conductivity on the CNT concentration and sizes is also investigated. Possible reasons for the variation trends are interpreted. The study in this paper is expected to provide an increased understanding on the stretching effects upon the electrical conductivity of CNT-polymer composites.


2014 ◽  
Vol 2 (35) ◽  
pp. 14289-14328 ◽  
Author(s):  
Horacio J. Salavagione ◽  
Ana M. Díez-Pascual ◽  
Eduardo Lázaro ◽  
Soledad Vera ◽  
Marián A. Gómez-Fatou

The performance of chemical sensors based on polymer nanocomposites with CNTs and graphene is revised, highlighting the role of the polymeric material.


RSC Advances ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 424-433
Author(s):  
Yasser Zare ◽  
Kyong Yop Rhee

This article presents the role of interfacial conductivity between the polymer matrix and nanoparticles in the electrical conductivity of polymer carbon nanotube (CNT) nanocomposites (PCNT) by simple equations.


Sign in / Sign up

Export Citation Format

Share Document