scholarly journals Erratum: “A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface” [Phys. Fluids 22, 062102 (2010)]

2011 ◽  
Vol 23 (1) ◽  
pp. 019901
Author(s):  
Huy-Bich Nguyen ◽  
Jyh-Chen Chen
2013 ◽  
Vol 390 ◽  
pp. 65-70
Author(s):  
Jun Jun Tao ◽  
Jun Qin ◽  
Xue Han ◽  
Yong Ming Zhang

A numerical study based on VOF model has been carried out to investigate the dynamics of water droplet impact on solid surface in microgravity in comparison with that in normal gravity to discuss the differences of the extinguishing mechanism of water mist in different gravity level. Water droplets with different initial diameters and impact velocities were considered. The simulated results show that the deformation process in microgravity lags behind that in normal gravity. And it was also found that Dmaxand spread velocities are smaller in microgravity as the potential energy decreases and the time taken for a liquid droplet to reach its maximum spread has no obvious regularity. Hence, the effect of cooling the fuel surface and diluting fuel vapour with water mist in microgravity may be not as good as that in normal gravity.The critical impact Weber number for water droplet breaking up in microgravity is lower than that in normal gravity as the reduction of the value of Bond number, which may result in diluting fuel vapour with water mist in microgravity being more effective than that in normal gravity in some case.


2013 ◽  
Vol 13 (4) ◽  
pp. 1733-1749 ◽  
Author(s):  
G. de Boer ◽  
T. Hashino ◽  
G. J. Tripoli ◽  
E. W. Eloranta

Abstract. Numerical simulations were carried out in a high-resolution two-dimensional framework to increase our understanding of aerosol indirect effects in mixed-phase stratiform clouds. Aerosol characteristics explored include insoluble particle type, soluble mass fraction, influence of aerosol-induced freezing point depression and influence of aerosol number concentration. Simulations were analyzed with a focus on the processes related to liquid phase microphysics, and ice formation was limited to droplet freezing. Of the aerosol properties investigated, aerosol insoluble mass type and its associated freezing efficiency was found to be most relevant to cloud lifetime. Secondary effects from aerosol soluble mass fraction and number concentration also alter cloud characteristics and lifetime. These alterations occur via various mechanisms, including changes to the amount of nucleated ice, influence on liquid phase precipitation and ice riming rates, and changes to liquid droplet nucleation and growth rates. Alteration of the aerosol properties in simulations with identical initial and boundary conditions results in large variability in simulated cloud thickness and lifetime, ranging from rapid and complete glaciation of liquid to the production of long-lived, thick stratiform mixed-phase cloud.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Haibo Zhao ◽  
Xing Han ◽  
Jiayu Li ◽  
Wei Li ◽  
Tao Huang ◽  
...  

2018 ◽  
Vol 5 (12) ◽  
pp. 181101 ◽  
Author(s):  
Y. Tatekura ◽  
M. Watanabe ◽  
K. Kobayashi ◽  
T. Sanada

The prime objective of this study is to answer the question: How large is the pressure developed at the instant of a spherical liquid droplet impact on a solid surface? Engel first proposed that the maximum pressure rise generated by a spherical liquid droplet impact on a solid surface is different from the one-dimensional water-hammer pressure by a spherical shape factor (Engel 1955 J. Res. Natl Bur. Stand. 55 (5), 281–298). Many researchers have since proposed various factors to accurately predict the maximum pressure rise. We numerically found that the maximum pressure rise can be predicted by the combination of water-hammer theory and the shock relation; then, we analytically extended Engel’s elastic impact model, by realizing that the progression speed of the contact between the gas–liquid interface and the solid surface is much faster than the compression wavefront propagation speed at the instant of the impact. We successfully correct Engel’s theory so that it can accurately provide the maximum pressure rise at the instant of impact between a spherical liquid droplet and solid surface, that is, no shape factor appears in the theory.


1995 ◽  
Vol 117 (3) ◽  
pp. 394-401 ◽  
Author(s):  
Natsuo Hatta ◽  
Hitoshi Fujimoto ◽  
Hirohiko Takuda

This paper is concerned with numerical simulations of the deformation behavior of a liquid droplet impinging on a flat solid surface, as well as the flow field inside the droplet. In the present situation, the case where a droplet impinges on the surface at room temperature with a speed in the order of a few [m/s], is treated. These simulations were performed using the MAC-type solution method to solve a finite-differencing approximation of the Navier-Stokes equations governing an axisymmetric and incompressible fluid flow. For the first case where the liquid is water, the liquid film formed by the droplet impinging on the solid surface flows radially along it and expands in a fairly thin discoid-like shape. Thereafter, the liquid flow shows a tendency to stagnate at the periphery of the circular film, with the result that water is concentrated there is a doughnut-like shape. Subsequently, the water begins to flow backwards toward the center where it accumulates in the central region. For the second case where a n-heptane droplet impinges the surface, the film continues to spread monotonically up to a maximum diameter and there is no recoiling process to cause a backwards flow towards the central region. In this study the whole deformation process was investigated from numerical as well as experimental points of view. We find that the results obtained by the present mathematical model give fairly good agreement with the experimental observations. The effects of the viscous stresses and the surface tension on the deformation process of the droplets are estimated and discussed from a practical standpoint.


Sign in / Sign up

Export Citation Format

Share Document