Perspective: Gravitational waves: “Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions” [Rev. Sci. Instrum. 82, 011301 (2011)]

2011 ◽  
Vol 82 (1) ◽  
pp. 010901
Author(s):  
James Hough
2011 ◽  
Vol 82 (1) ◽  
pp. 011301 ◽  
Author(s):  
A. Heptonstall ◽  
M. A. Barton ◽  
A. Bell ◽  
G. Cagnoli ◽  
C. A. Cantley ◽  
...  

1998 ◽  
Vol 13 (20) ◽  
pp. 1653-1665 ◽  
Author(s):  
JOHN ARGYRIS ◽  
CORNELIU CIUBOTARIU

In this letter we signalize the possibility of applying a quantum chaos as an element of high sensitivity which serves to detect small changes in length generated by gravitational waves. We propose the construction of a double-bar antenna with a coupling Josephson junction in its center-of-mass. In fact the new antenna is a single Josephson junction with massive bulk contacts, like a single-junction SQUID but with free ends. Computer experiments demonstrate that very small changes generated by the variation of the distance between the bulk plates of the junction capacitance will produce a variety of very different intermittency routes to chaos. A concrete numerical example illustrates the smallness of a quantum of chaos and thus the extraordinary sensitivity of the proposed method.


2005 ◽  
Vol 22 (3) ◽  
pp. 179-183 ◽  
Author(s):  
George Hobbs

AbstractThe number of known millisecond pulsars has dramatically increased in the last few years. Regular observations of these pulsars may allow gravitational waves with frequencies ∼10−9 Hz to be detected. A ‘pulsar timing array’ is therefore complimentary to other searches for gravitational waves using ground-based or space-based interferometers that are sensitive to much higher frequencies. In this review we describe (1) the basic methods for using an array of pulsars as a gravitational wave detector, (2) the sources of the potentially detectable waves, (3) current limits on individual sources and a stochastic background, and (4) the new project recently started using the Parkes radio telescope.


2019 ◽  
pp. 33-38
Author(s):  
Nicholas Mee

The European Space Agency (ESA) has plans to build a space-based gravitational wave detector known as LISA. The recent LISA Pathfinder mission has demonstrated that the technology required for LISA will be sufficiently sensitive to detect gravitational waves. LISA will detect events that are invisible to LIGO and other Earth-based gravitational wave detectors. These include the mergers of distant supermassive black holes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  

AbstractIn this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper.


2004 ◽  
Vol 21 (5) ◽  
pp. S1107-S1111 ◽  
Author(s):  
Carlos Frajuca ◽  
Kilder L Ribeiro ◽  
Luiz A Andrade ◽  
Odylio D Aguiar ◽  
Nadja S Magalhães ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document