Rough surface contact analysis and its relation to plastic deformation at the head–disk interface

1996 ◽  
Vol 79 (8) ◽  
pp. 5799 ◽  
Author(s):  
Chin Y. Poon ◽  
Bharat Bhushan
2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Yuqin Wen ◽  
Jinyuan Tang ◽  
Wei Zhou ◽  
Lin Li

Abstract The 3D rough surface modeling and contact analysis is a difficult problem in the study of rough surface contact. In this paper, a new method for reconstruction and contact analysis of asperities on 3D rough surfaces is proposed based on real rough surfaces. Watershed algorithm is used to segment and determine the area of asperities on the rough surface. According to the principle of minimum mean square error, ellipsoid fitting is carried out on asperities. Based on the elastic-plastic contact model of a single ellipsoidal asperity, a stable and efficient method for 3D rough surface contact analysis and calculation is proposed. Compared with existing calculating methods, the present method has the following characteristics: (1) the constructed surface asperity is closer to the real asperity in contact, and the calculation of asperity parameters has better stability under different sampling intervals and (2) the contact pressure, contact area, and other contact parameters of the 3D rough surface are calculated with high accuracy and efficiency, and the calculation convergence is desirable. The reconstruction and contact analysis method of the 3D rough surface asperity proposed in this paper provides a more accurate reconstruction and calculation method for the study of contact fatigue life and wear failure of rough surfaces.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Xi Shi ◽  
Yunwu Zou

Greenwood and Tripp (GT model) have proposed that the contact analysis of two rough surfaces (two-rough-surface contact model) could be considered as an equivalent rough surface in contact with a rigid flat (single-rough-surface contact model). In this paper, by virtue of finite element method, the normal contact analysis was performed with two-rough-surface contact model and its equivalent single-rough-surface contact model, and it was verified that the resultant normal contact forces are in good agreement with each other for these two models, meanwhile the equivalent stress is a little bit lower for two-rough-surface model due to shoulder-to-shoulder contact. In contrast, the sliding contact analysis was also performed with these two models, respectively, and the results show a great disparity with each other in all contact parameters due to the strong plowing effects in two-rough-surface model. Therefore, this equivalence approach proposed by Greenwood and Tripp is only valid for normal contact of rough surfaces and not valid for sliding contact.


1994 ◽  
Vol 116 (4) ◽  
pp. 850-859 ◽  
Author(s):  
C. Y. Poon ◽  
R. S. Sayles

The effects of surface roughness and waviness upon the real contact areas, gaps between contact spots, and asperity contact pressures were studied. The distribution of real areas, gaps, and contact pressures are presented for different surface roughness, σ and correlation lengths, β*. The load-area relationship is compared to Bush’s model of strongly anisotropic rough surface contact using a stochastic approach.


Sign in / Sign up

Export Citation Format

Share Document