Fractal modeling of normal contact stiffness for rough surface contact considering the elastic–plastic deformation

Author(s):  
Huifang Xiao ◽  
Yunyun Sun ◽  
Zaigang Chen
2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Jungkyu Lee ◽  
Ali Beheshti ◽  
Andreas A. Polycarpou

This work presents experimental contact stiffness measurements for various thin films as well as homogenous materials through pressing a flat punch onto a nominally flat rough surface. These materials are typically used in micro/nano technological applications with thickness of the order of few nanometers. The experimental contact stiffness results are compared with predictions by different statistical rough surface contact models to assess their predictive accuracy for thin-film applications and, in addition, to get better insight to the physics of the contact. It is observed that rough surface contact models that account for asperity interaction show good agreement with the experimental results of the thin-layered specimens contact response. This indicates the importance of accounting for asperity interaction in surface roughness contact modeling of relatively smooth thin-film materials. It is verified that interfaces with compliant films on stiff substrates as well as homogeneous materials compare relatively well with statistical models accounting for asperity interactions.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Philip Varney ◽  
Itzhak Green

Rotating machines and associated triboelements are ubiquitous in industrial society, playing a central role in power generation, transportation, and manufacturing. Unfortunately, these systems are susceptible to undesirable contact (i.e., rub) between the rotor and stator, which is both costly and dangerous. These adverse effects can be alleviated by properly applying accurate real-time diagnostics. The first step toward accurate diagnostics is developing rotor–stator rub models which appropriately emulate reality. Previous rotor–stator rub models disavow the contact physics by reducing the problem to a single esoteric linear contact stiffness occurring only at the point of maximum rotor radial deflection. Further, the contact stiffness is typically chosen arbitrarily, and as such provides no additional insight into the contacting surfaces. Here, a novel rotor–stator rub model is developed by treating the strongly conformal curved surfaces according to their actual nature: a collection of stochastically distributed asperities. Such an approach is advantageous in that it relies on real surface measurements to quantify the contact force rather than a heuristic choice of linear contact stiffness. Specifically, the elastoplastic Jackson–Green (JG) rough surface contact model is used to obtain the quasistatic contact force versus rotor radial deflection; differences and similarities in contact force between the linear elastic contact model (LECM) and JG model are discussed. Furthermore, the linear elastic model's point contact assumption is assessed and found to be inaccurate for systems with small clearances. Finally, to aid in computational efficiency in future rotordynamic simulation, a simple exponential curve fit is proposed to approximate the JG force–displacement relationship.


2020 ◽  
Author(s):  
Chao-Chao Yin ◽  
Hai-Hong Huang ◽  
Dan Zhou ◽  
Zhi-Feng Liu

Abstract Effects of surface texturing on the normal contact stiffness of joint surfaces had been investigated by experiments in many previous researches; however, there are relatively few theoretical models in this regard. The rough surface with surface texturing can be divided into two parts: the textured zone and the remaining zone, and their theoretical models are established respectively in this research. For the textured zone, the texture is modeled theoretically based on the three-dimensional topographic data obtained via a 3D-CCMP1 type laser profilometer from TRIMOS. For the remaining zone, the model of normal contact stiffness is established based on the fractal theory for the surface topography description and elastic-plastic deformation of surface asperities, and the structure function method is used to calculate the fractal dimension of rough surface profiles. In the experiment, the normal contact stiffness of specimens is obtained under different normal loads, and the test results are compared with the theoretical predictions. The result shows that the predictions of proposed theoretical model are in good agreement with the experimental data. For the joint surfaces with Sa>2.69 μm, the normal contact stiffness can be effectively increased through proper surface texturing.


Author(s):  
Feng Zhang ◽  
Arif S Malik

Abstract In thin-gauge cold rolling of metal sheet, the surface roughness of work-rolls is known to affect the rolled sheet surface morphology, the required rolling load, and the roll wear. While modeling of rough surfaces using statistical asperity theory has been widely applied to problems involving semi-infinite solids, the application of asperity distributions and their elastic-plastic behavior has not been considered in roll-stack models for cold sheet rolling. In this work, a simplified-mixed finite element method (SM-FEM) is combined with statistical elastic-plastic asperity theory to study contact interference and coupling effects between a rough work-roll surface and the roll-stack mechanics in cold sheet rolling. By mixing equivalent rough-surface contact foundations, Hertz foundations, and Timoshenko beam stiffness, an approach is created to efficiently model interactions between the micro-scale asperities and the macro-scale roll-stack deformation. Nonlinearities from elastic-plastic material behavior of the asperities and the sheet, as well as changing contact conditions along the roll length, are also accommodated. Performance of the multi-scale SM-FEM approach is made by comparison to a continuum finite element virtual material model. 3D studies for a 4-high mill reveal new multi-scale coupling behaviors, including non-uniform roughness transfer, and perturbations to the sheet thickness ‘crown’ and contact force profiles. The described multi-scale SM-FEM approach is general and applies to rough surface contact problems involving plates and shear-deformable beams having multiple contact interfaces and arbitrary surface profiles.


Author(s):  
Huifang Xiao ◽  
Yunyun Sun ◽  
Xiaojun Zhou ◽  
Zaigang Chen

In this paper, a general contact stiffness model is proposed to study the mixed lubricated contact between a rough surface and a rigid flat plate, which is the equivalent model for the contact between two rough surfaces and is the general case for engineering contact interfaces. The total interfacial contact stiffness is composed of the dry rough surface contact stiffness and the liquid lubricant contact stiffness. The GW model is used for surface topography description and the contact stiffness of a single asperity is derived from the Hertz contact theory. The whole dry rough contact stiffness is obtained by multiple the single asperity contact stiffness with the number of contact asperities, which is derived based on the statistical model. The liquid film stiffness is derived based on a spring model. The stiffness contributions from the asperity contact part and lubricant layer part are separated and analyzed.


Sign in / Sign up

Export Citation Format

Share Document