The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software

Author(s):  
S. M. Webb ◽  
Ian McNulty ◽  
Catherine Eyberger ◽  
Barry Lai
Author(s):  
Sav Chima

Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together. In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography (CT) and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.


2006 ◽  
Vol 309-311 ◽  
pp. 1095-1098 ◽  
Author(s):  
Mitsuru Takemoto ◽  
Shunsuke Fujibayashi ◽  
B. Otsuki ◽  
Tomiharu Matsushita ◽  
Tadashi Kokubo ◽  
...  

Generally, characterizations of pore structures of porous biomaterials are mainly based on 2-dimensional (2-D) analysis using cross sectional micrographs. However, interconnectivity of each pore may be more important factor, when tissue ingrowth into deeper pores is considered. In this paper, using micro-CT imaging with 3-D image processing software, analyses of porous material based on 3-demensional (3-D) geometrical considerations were successfully performed. Plasmasprayed porous titanium implant (PT) and four types of sintered porous titanium implants (ST50- 200, ST50-500, ST70-200, and ST70-500) that possess different porosities (50% and 70%) and pore sizes (200-500+m and 500-1500+m) were analyzed in this study. A micro focus X-ray computed tomography system was employed to acquire microstructural information from the porous implants. Using 3-D image processing software, we performed three types of 3-D analysis including detection of the dead space (% dead pore), analysis of interconnectivity by blocking the narrow pore throat with caliber less than 52 +m (% pore with narrow throat) and analysis of material construct by contracting thin strut with thickness less than 52 +m (% construct with thin strut). ST50S and ST50L possessed interconnected porous structure with thicker strut; however, pore throat was considered to be relatively narrow. On the other hand, PT implant possesses favorable interconnectivity despite its’ low porosity; however, relatively thin strut indicate the structural disadvantage for mechanical property. These results suggest that the 3-D analysis of pore and strut structure using micro focus X-ray computed tomography and 3-D image processing software will provide effective information to develop porous implant.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Sign in / Sign up

Export Citation Format

Share Document