scholarly journals Structure and dynamics of the electronically excited C 1 and D 0+states of ArXe from high-resolution vacuum ultraviolet spectra

2012 ◽  
Vol 136 (7) ◽  
pp. 074304 ◽  
Author(s):  
Lorena Piticco ◽  
Martin Schäfer ◽  
Frédéric Merkt
2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


1997 ◽  
Vol 68 (5) ◽  
pp. 1945-1951 ◽  
Author(s):  
P. A. Heimann ◽  
M. Koike ◽  
C. W. Hsu ◽  
D. Blank ◽  
X. M. Yang ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
pp. 253-272 ◽  
Author(s):  
M. R. Canagaratna ◽  
J. L. Jimenez ◽  
J. H. Kroll ◽  
Q. Chen ◽  
S. H. Kessler ◽  
...  

Abstract. Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion fragments as markers to correct for molecular functionality-dependent systematic biases and reproduces known O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C (H : C) values is smaller for theoretical standard mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OS C values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OS C units). This indicates that OS C is a more robust metric of oxidation than O : C, likely since OS C is not affected by hydration or dehydration, either in the atmosphere or during analysis.


1987 ◽  
Vol 7 (2-4) ◽  
pp. 129-139 ◽  
Author(s):  
Toshiaki Munakata ◽  
Tadahiko Mizukuki ◽  
Akira Misu ◽  
Motowo Tsukakoshi ◽  
Takahiro Kasuya

The photoionization spectrum of HBr around the first ionization limit was measured at resolution of up to 5 x 10−4 nm. The ionizing vacuum ultraviolet radiation was generated by frequency tripling of the second harmonic output of a dye laser. Three sets of Rydberg series, each converging to the ground state (2Π3/2) of HBr+, were observed on the longer wavelength side of the ionization limit. By extrapolation of the Rydberg series, the ionization potential of HBr was determined to be 11.666 ± 0.001 eV.


1999 ◽  
Vol 17 (6) ◽  
pp. 3209-3217 ◽  
Author(s):  
J. R. Woodworth ◽  
M. G. Blain ◽  
R. L. Jarecki ◽  
T. W. Hamilton ◽  
B. P. Aragon

Sign in / Sign up

Export Citation Format

Share Document