nucleosome dynamics
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 43)

H-INDEX

31
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Qi Zhang ◽  
Peter Radvak ◽  
Juhyung Lee ◽  
Yue Xu ◽  
Vivian Cao-Dao ◽  
...  

Spike-mediated entry of SARS-CoV-2 into human airway epithelial cells is an attractive therapeutic target for COVID-19. In addition to protein receptors, the SARS-CoV-2 spike (S) protein also interacts with heparan sulfate, a negatively charged glycosaminoglycan (GAG) attached to certain membrane proteins on the cell surface. This interaction facilitates the engagement of spike with a downstream receptor to promote viral entry. Here, we show that Mitoxantrone, an FDA-approved topoisomerase inhibitor, targets a spike-GAG complex to compromise the fusogenic function of spike in viral entry. As a single agent, Mitoxantrone inhibits the infection of an authentic SARS-CoV-2 strain in a cell-based model and in human lung EpiAirway 3D tissues. Gene expression profiling supports the plasma membrane as a major target of Mitoxantrone but also underscores an undesired activity targeting nucleosome dynamics. We propose that Mitoxantrone analogs bearing similar GAG-binding activities but with reduced affinity for DNA topoisomerase may offer an alternative therapy to overcome breakthrough infections in the post-vaccine era.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1596
Author(s):  
Vincenzo Cavalieri

The emergence of a nucleosome-based chromatin structure accompanied the evolutionary transition from prokaryotes to eukaryotes. In this scenario, histones became the heart of the complex and precisely timed coordination between chromatin architecture and functions during adaptive responses to environmental influence by means of epigenetic mechanisms. Notably, such an epigenetic machinery involves an overwhelming number of post-translational modifications at multiple residues of core and linker histones. This review aims to comprehensively describe old and recent evidence in this exciting field of research. In particular, histone post-translational modification establishing/removal mechanisms, their genomic locations and implication in nucleosome dynamics and chromatin-based processes, as well as their harmonious combination and interdependence will be discussed.


2021 ◽  
Author(s):  
Shuxiang Li ◽  
Yunhui Peng ◽  
David Landsman ◽  
Anna Panchenko

Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported in both prokaryotes and eukaryotes, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here we investigated the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability. By applying long molecular dynamics simulations (five microsecond long trajectories, 60 microseconds in total), we generated extensive atomic level conformational full nucleosome ensembles. Our results revealed that methylation induces pronounced changes in geometry for both linker and nucleosomal DNA, leading to a more curved, under-twisted DNA, shifting the population equilibrium of sugar-phosphate backbone geometry. These conformational changes are associated with a considerable enhancement of interactions between methylated DNA and the histone octamer, doubling the number of contacts at some key arginines. H2A and H3 tails play important roles in these interactions, especially for DNA methylated nucleosomes. This, in turn, prevents a spontaneous DNA unwrapping of 3-4 helical turns for the methylated nucleosome with truncated histone tails, otherwise observed in the unmethylated system on several microsecond time scale.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009013
Author(s):  
Jan Huertas ◽  
Hans Robert Schöler ◽  
Vlad Cojocaru

Genomic DNA is packaged in chromatin, a dynamic fiber variable in size and compaction. In chromatin, repeating nucleosome units wrap 145–147 DNA basepairs around histone proteins. Genetic and epigenetic regulation of genes relies on structural transitions in chromatin which are driven by intra- and inter-nucleosome dynamics and modulated by chemical modifications of the unstructured terminal tails of histones. Here we demonstrate how the interplay between histone H3 and H2A tails control ample nucleosome breathing motions. We monitored large openings of two genomic nucleosomes, and only moderate breathing of an engineered nucleosome in atomistic molecular simulations amounting to 24 μs. Transitions between open and closed nucleosome conformations were mediated by the displacement and changes in compaction of the two histone tails. These motions involved changes in the DNA interaction profiles of clusters of epigenetic regulatory aminoacids in the tails. Removing the histone tails resulted in a large increase of the amplitude of nucleosome breathing but did not change the sequence dependent pattern of the motions. Histone tail modulated nucleosome breathing is a key mechanism of chromatin dynamics with important implications for epigenetic regulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elisa Oberbeckmann ◽  
Vanessa Niebauer ◽  
Shinya Watanabe ◽  
Lucas Farnung ◽  
Manuela Moldt ◽  
...  

AbstractArrays of regularly spaced nucleosomes dominate chromatin and are often phased by alignment to reference sites like active promoters. How the distances between nucleosomes (spacing), and between phasing sites and nucleosomes are determined remains unclear, and specifically, how ATP-dependent chromatin remodelers impact these features. Here, we used genome-wide reconstitution to probe how Saccharomyces cerevisiae ATP-dependent remodelers generate phased arrays of regularly spaced nucleosomes. We find that remodelers bear a functional element named the ‘ruler’ that determines spacing and phasing in a remodeler-specific way. We use structure-based mutagenesis to identify and tune the ruler element residing in the Nhp10 and Arp8 modules of the INO80 remodeler complex. Generally, we propose that a remodeler ruler regulates nucleosome sliding direction bias in response to (epi)genetic information. This finally conceptualizes how remodeler-mediated nucleosome dynamics determine stable steady-state nucleosome positioning relative to other nucleosomes, DNA bound factors, DNA ends and DNA sequence elements.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Mai Huynh ◽  
Satya Yadav ◽  
Joseph Reese ◽  
Tae‐Hee Lee

2021 ◽  
Author(s):  
Caitlin M. MacCarthy ◽  
Jan Huertas ◽  
Claudia Ortmeier ◽  
Hermann vom Bruch ◽  
Deike Reinke ◽  
...  

Pioneer transcription factors induce cellular identity transitions by binding to sites on inaccessible DNA wrapped in nuclear chromatin. They contribute to chromatin opening and recruit other factors to regulatory DNA sites. The structural basis of their interaction with the chromatin structural unit, the nucleosome, is still unresolved. From a combination of experiments and molecular simulations we reveal here how Oct4, the master regulator and inducer of cellular pluripotency, interprets and enhances nucleosome structural flexibility. The magnitude of Oct4 impact on nucleosome dynamics depends on the binding site position and the mobility of unstructured tails of nucleosomal histone proteins. Oct4 propagates and stabilizes open nucleosome conformations by specific sequence recognition and unspecific DNA exploration. Our findings provide a structural basis for the versatility of transcription factors in engaging with nucleosomes and have implications for understanding how pioneer factors induce chromatin dynamics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Grigoriy A. Armeev ◽  
Anastasiia S. Kniazeva ◽  
Galina A. Komarova ◽  
Mikhail P. Kirpichnikov ◽  
Alexey K. Shaytan

AbstractNucleosomes are elementary building blocks of chromatin in eukaryotes. They tightly wrap ∼147 DNA base pairs around an octamer of histone proteins. How nucleosome structural dynamics affect genome functioning is not completely clear. Here we report all-atom molecular dynamics simulations of nucleosome core particles at a timescale of 15 microseconds. At this timescale, functional modes of nucleosome dynamics such as spontaneous nucleosomal DNA breathing, unwrapping, twisting, and sliding were observed. We identified atomistic mechanisms of these processes by analyzing the accompanying structural rearrangements of the histone octamer and histone-DNA contacts. Octamer dynamics and plasticity were found to enable DNA unwrapping and sliding. Through multi-scale modeling, we showed that nucleosomal DNA dynamics contribute to significant conformational variability of the chromatin fiber at the supranucleosomal level. Our study further supports mechanistic coupling between fine details of histone dynamics and chromatin functioning, provides a framework for understanding the effects of various chromatin modifications.


Sign in / Sign up

Export Citation Format

Share Document