Comparisons of classical and quantum dynamics for initially localized states

1984 ◽  
Vol 80 (10) ◽  
pp. 5036-5048 ◽  
Author(s):  
M. J. Davis ◽  
E. J. Heller
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yao Wang ◽  
Bi-Ye Xie ◽  
Yong-Heng Lu ◽  
Yi-Jun Chang ◽  
Hong-Fei Wang ◽  
...  

AbstractHigher-order topological insulators, as newly found non-trivial materials and structures, possess topological phases beyond the conventional bulk-boundary correspondence. In previous studies, in-gap boundary states such as the corner states were regarded as conclusive evidence for the emergence of higher-order topological insulators. Here, we present an experimental observation of a photonic higher-order topological insulator with corner states embedded into the bulk spectrum, denoted as the higher-order topological bound states in the continuum. Especially, we propose and experimentally demonstrate a new way to identify topological corner states by exciting them separately from the bulk states with photonic quantum superposition states. Our results extend the topological bound states in the continuum into higher-order cases, providing an unprecedented mechanism to achieve robust and localized states in a bulk spectrum. More importantly, our experiments exhibit the advantage of using the time evolution of quantum superposition states to identify topological corner modes, which may shed light on future exploration between quantum dynamics and higher-order topological photonics.


Author(s):  
Yukihiro Fujimoto ◽  
Kohkichi Konno ◽  
Tomoaki Nagasawa

Abstract We discuss quantum dynamics in the ring systems with double Y-junctions in which two arms have same length. The node of a Y-junction can be parametrized by U(3). Considering mathematically permitted junction conditions seriously, we formulate such systems by scattering matrices. We show that the symmetric ring systems, which consist of two nodes with the same parameters under the reflection symmetry, have remarkable aspects that there exist localized states inevitably, and resonant perfect transmission occurs when the wavenumber of an incoming wave coincides with that of the localized states, for any parameters of the nodes except for the extremal cases in which the absolute values of components of scattering matrices take 1. We also investigate the magnetic disturbance to the symmetric ring systems.


1972 ◽  
Vol 33 (C3) ◽  
pp. C3-21-C3-25 ◽  
Author(s):  
F. BASSANI

1981 ◽  
Vol 42 (C4) ◽  
pp. C4-383-C4-386 ◽  
Author(s):  
S. G. Bishop ◽  
B. V. Shanabrook ◽  
U. Strom ◽  
P. C. Taylor

2003 ◽  
Vol 764 ◽  
Author(s):  
X. A. Cao ◽  
S. F. LeBoeuf ◽  
J. L. Garrett ◽  
A. Ebong ◽  
L. B. Rowland ◽  
...  

Absract:Temperature-dependent electroluminescence (EL) of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission energies ranging from 2.3 eV (green) to 3.3 eV (UV) has been studied over a wide temperature range (5-300 K). As the temperature is decreased from 300 K to 150 K, the EL intensity increases in all devices due to reduced nonradiative recombination and improved carrier confinement. However, LED operation at lower temperatures (150-5 K) is a strong function of In ratio in the active layer. For the green LEDs, emission intensity increases monotonically in the whole temperature range, while for the blue and UV LEDs, a remarkable decrease of the light output was observed, accompanied by a large redshift of the peak energy. The discrepancy can be attributed to various amounts of localization states caused by In composition fluctuation in the QW active regions. Based on a rate equation analysis, we find that the densities of the localized states in the green LEDs are more than two orders of magnitude higher than that in the UV LED. The large number of localized states in the green LEDs are crucial to maintain high-efficiency carrier capture at low temperatures.


2016 ◽  
Vol 12 (1) ◽  
pp. 4172-4177
Author(s):  
Abdul Malek

The denial of the existence of contradiction is at the root of all idealism in epistemology and the cause for alienations.  This alienation has become a hindrance for the understanding of the nature and the historical evolution mathematics itself and its role as an instrument in the enquiry of the physical universe (1). A dialectical materialist approach incorporating  the role of the contradiction of the unity of the opposites, chance and necessity etc., can provide a proper understanding of the historical evolution of mathematics and  may ameliorate  the negative effect of the alienation in modern theoretical physics and cosmology. The dialectical view also offers a more plausible materialist interpretation of the bewildering wave-particle duality in quantum dynamics (2).


Author(s):  
Walter Dittrich ◽  
Martin Reuter
Keyword(s):  

1995 ◽  
Author(s):  
J. Lobaugh ◽  
Gregory A. Voth
Keyword(s):  

2003 ◽  
Vol 68 (3) ◽  
pp. 529-553 ◽  
Author(s):  
Ivana Paidarová ◽  
Philippe Durand

The wave operator theory of quantum dynamics is reviewed and applied to the study of line profiles and to the determination of the dynamics of interacting resonances. Energy-dependent and energy-independent effective Hamiltonians are investigated. The q-reversal effect in spectroscopy is interpreted in terms of interfering Fano profiles. The dynamics of an hydrogen atom subjected to a strong static electric field is revisited.


Sign in / Sign up

Export Citation Format

Share Document