Surface hopping simulation of vibrational predissociation of methanol dimer

2012 ◽  
Vol 136 (22) ◽  
pp. 224104 ◽  
Author(s):  
Ruomu Jiang ◽  
Edwin L. Sibert
Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2029
Author(s):  
Ernesto García-Alfonso ◽  
Maykel Márquez-Mijares ◽  
Jesús Rubayo-Soneira ◽  
Nadine Halberstadt ◽  
Kenneth C. Janda ◽  
...  

The vibrational predissociation of NeBr2 has been studied using a variety of theoretical and experimental methods, producing a large number of results. It is therefore a useful system for comparing different theoretical methods. Here, we apply the trajectory surface hopping (TSH) method that consists of propagating the dynamics of the system on a potential energy surface (PES) corresponding to quantum molecular vibrational states with possibility of hopping towards other surfaces until the van der Waals bond dissociates. This allows quantum vibrational effects to be added to a classical dynamics approach. We have also incorporated the kinetic mechanism for a better compression of the evolution of the complex. The novelty of this work is that it allows us to incorporate all the surfaces for (v=16,17,…,29) into the dynamics of the system. The calculated lifetimes are similar to those previously reported experimentally and theoretically. The rotational distribution, the rotational energy and jmax are in agreement with other works, providing new information for this complex.


1997 ◽  
Vol 280 (3-4) ◽  
pp. 185-188 ◽  
Author(s):  
A. Bastida ◽  
J. Zuñiga ◽  
A. Requena ◽  
I. Sola ◽  
N. Halberstadt ◽  
...  

1989 ◽  
Vol 90 (5) ◽  
pp. 2605-2616 ◽  
Author(s):  
Joseph I. Cline ◽  
N. Sivakumar ◽  
Dwight D. Evard ◽  
Craig R. Bieler ◽  
Brian P. Reid ◽  
...  

2021 ◽  
Vol 23 (9) ◽  
pp. 5236-5243
Author(s):  
Ying Hu ◽  
Chao Xu ◽  
Linfeng Ye ◽  
Feng Long Gu ◽  
Chaoyuan Zhu

Global switching on-the-fly trajectory surface hopping molecular dynamics simulation was performed on the accurate TD-B3LYP/6-31G* potential energy surfaces for E-to-Z and Z-to-E photoisomerization of dMe-OMe-NAIP up to S1(ππ*) excitation.


2020 ◽  
Vol 221 ◽  
pp. 501-525 ◽  
Author(s):  
Soumya Ghosh ◽  
Samuele Giannini ◽  
Kevin Lively ◽  
Jochen Blumberger

Exploring effects of quantizing nuclei in non-adiabatic dynamics for simulating charge transfer in a dimer of “ethylene-like-molecules” at different temperatures.


2020 ◽  
Vol 33 (5) ◽  
pp. 603-612
Author(s):  
Bing-yang Xiao ◽  
Jia-bo Xu ◽  
Lin-jun Wang
Keyword(s):  

1983 ◽  
Vol 2 (3-4) ◽  
pp. 125-135 ◽  
Author(s):  
J. J. F. Ramaekers ◽  
L. B. Krijnen ◽  
H. J. Lips ◽  
J. Langelaar ◽  
R. P. H. Rettschnick

s-Tetrazine argon complexes T−Arn (n = 1, 2) are formed in a supersonic expansion of argon seeded with s-tetrazine. The expansion was conducted through a nozzle of 50 or 100 μm with an argon stagnation pressure between 1 and 1.5 bar. From spectrally resolved measurements it is clear that vibrational redistribution processes as well as vibrational predissociation processes take place after SVL excitation within the complex.From rise and decay time experiments it can be concluded, that after excitation of the 6a1 complex level, the above mentioned processes are consecutive and not parallel. It appears that the out of plane mode 16a couples with the Van der Waals stretching mode. The predissociation rate of the 16a2 complex is observed to be 2.3 × 109 s−1.


Sign in / Sign up

Export Citation Format

Share Document