High-efficiency heterojunction solar cells on crystalline germanium substrates

2012 ◽  
Vol 101 (3) ◽  
pp. 032102 ◽  
Author(s):  
Bahman Hekmatshoar ◽  
Davood Shahrjerdi ◽  
Marinus Hopstaken ◽  
Keith Fogel ◽  
Devendra K. Sadana
ENERGYO ◽  
2018 ◽  
Author(s):  
Stefaan De Wolf ◽  
Antoine Descoeudres ◽  
Zachary C. Holman ◽  
Christophe Ballif

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4667
Author(s):  
Laurentiu Fara ◽  
Irinela Chilibon ◽  
Ørnulf Nordseth ◽  
Dan Craciunescu ◽  
Dan Savastru ◽  
...  

This study is aimed at increasing the performance and reliability of silicon-based heterojunction solar cells with advanced methods. This is achieved by a numerical electro-optical modeling and reliability analysis for such solar cells correlated with experimental analysis of the Cu2O absorber layer. It yields the optimization of a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model. Experimental research of N-doped Cu2O thin films was dedicated to two main activities: (1) fabrication of specific samples by DC magnetron sputtering and (2) detailed characterization of the analyzed samples. This last investigation was based on advanced techniques: morphological (scanning electron microscopy—SEM and atomic force microscopy—AFM), structural (X-ray diffraction—XRD), and optical (spectroscopic ellipsometry—SE and Fourier-transform infrared spectroscopy—FTIR). This approach qualified the heterojunction solar cell based on cuprous oxide with nitrogen as an attractive candidate for high-performance solar devices. A reliability analysis based on Weibull statistical distribution establishes the degradation degree and failure rate of the studied solar cells under stress and under standard conditions.


2014 ◽  
Vol 16 (29) ◽  
pp. 15400-15410 ◽  
Author(s):  
Yiming Liu ◽  
Yun Sun ◽  
Wei Liu ◽  
Jianghong Yao

A novel high-efficiency c-Si heterojunction solar cell with using compound hetero-materials is proposed and denominated HCT (heterojunction with a compound thin-layer).


Sign in / Sign up

Export Citation Format

Share Document