A comparison of ground- and excited-state properties of gas phase and crystalline ruthenocene using density functional theory

1998 ◽  
Vol 109 (4) ◽  
pp. 1425-1434 ◽  
Author(s):  
F. Gilardoni ◽  
J. Weber ◽  
A. Hauser ◽  
C. Daul
RSC Advances ◽  
2021 ◽  
Author(s):  
Guanzhao Wen ◽  
Xianshao Zou ◽  
Rong Hu ◽  
Jun Peng ◽  
Zhifeng Chen ◽  
...  

Ground- and excited-states properties of N2200 have been studied by steady-state and time-resolved spectroscopies as well as time-dependent density functional theory calculations.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 679
Author(s):  
Pouya Partovi-Azar ◽  
Daniel Sebastiani

Recently, a new method [P. Partovi-Azar and D. Sebastiani, J. Chem. Phys. 152, 064101 (2020)] was proposed to increase the efficiency of proton transfer energy calculations in density functional theory by using the T1 state with additional optimized effective potentials instead of calculations at S1. In this work, we focus on proton transfer from six prototypical photoacids to neighboring water molecules and show that the reference proton dissociation curves obtained at S1 states using time-dependent density functional theory can be reproduced with a reasonable accuracy by performing T1 calculations at density functional theory level with only one additional effective potential for the acidic hydrogens. We also find that the extra effective potentials for the acidic hydrogens neither change the nature of the T1 state nor the structural properties of solvent molecules upon transfer from the acids. The presented method is not only beneficial for theoretical studies on excited state proton transfer, but we believe that it would also be useful for studying other excited state photochemical reactions.


2021 ◽  
pp. 1-12
Author(s):  
Halimeh Rajabzadeh ◽  
Ayla Sharafat ◽  
Maryam Abbasi ◽  
Maryam Eslami Gharaati ◽  
Iraj Alipourfard

Favipiravir (Fav) has become a well-known drug for medication of patients by appearance of COVID-19. Heterocyclic structure and connected peptide group could make changes for Fav yielding different features from those required features. Therefore, it is indeed a challenging task to prepare a Fav compound with specific features of desired function. In this work, existence of eight Fav structures by tautomeric formations and peptide group rotations were obtained using density functional theory (DFT) optimization calculations. Gas phase, octanol solution, and water solution were employed to show impact of solution on features of Fav besides obtaining partition coefficients (LogP) for Fav compounds. Significant impacts of solutions were seen on features of Fav with the obtained LogP order: Fav-7 >  Fav-8 >  Fav-4 >  Fav-3 >  Fav-2 >  Fav-5 >  Fav-1 >  Fav-6. As a consequence, internal changes yielded significant impacts on features of Fav affirming its carful medication of COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document