The effect of aspect ratio on the piezoresistive behavior of the multiwalled carbon nanotubes/thermoplastic elastomer nanocomposites

2013 ◽  
Vol 113 (1) ◽  
pp. 014102 ◽  
Author(s):  
Jun-Wei Zha ◽  
Khurram Shehzad ◽  
Wei-Kang Li ◽  
Zhi-Min Dang
2010 ◽  
Vol 10 (4) ◽  
pp. 1046-1052 ◽  
Author(s):  
Don-Young Kim ◽  
Young Soo Yun ◽  
Hyeonseong Bak ◽  
Se Youn Cho ◽  
Hyoung-Joon Jin

2016 ◽  
Vol 49 (4) ◽  
pp. 345-355 ◽  
Author(s):  
Mou’ad A Tarawneh ◽  
Sahrim Ahmad ◽  
Ruey Shan Chen

This article studies the enhancement in the properties of thermoplastic natural rubber (TPNR) reinforced by graphene oxide (GnO) and multiwalled carbon nanotubes (MWCNTs). TPNR is a blend of polypropylene and liquid natural rubber (NR), which is used as a compatibilizer and NR at a percentage of volume ratio 70:10:20, respectively. Using TPNR as the host matrix, a number of TPNR/carbon nanotubes (CNTs), TPNR/GnO, and hybrid TPNR/GnO/CNTs nanocomposites are processed and their mechanical, thermal, and electrical properties are characterized. The results extracted from tensile and impact test showed that tensile strength, Young’s modulus, and storage modulus of TPNR/GnO/MWCNTs hybrid nanocomposite increased as compared with TPNR composite and TPNR/GnO nanocomposite but lower than TPNR/MWCNTs nanocomposite. On the other hand, the elongation at break considerably decreased with increasing the content of both types of nanoparticles. Based on the experimental results, the thermal, electrical conductivity of a 0.5 wt% MWCNTs-reinforced sample increased as compared with a pure TPNR and other MWCNTs/GnO-reinforced composites. The improved dispersion properties of the nanocomposites can be due to altered interparticle interactions. MWCNTs, GnO, and MWCNTs–GnO networks are well combined to generate a synergistic effect that is shown by scanning electron microscopy micrographs. With the existence of this network, the mechanical, thermal, and electrical properties of the nanocomposite were improved significantly.


2018 ◽  
Author(s):  
Zygmunt Staniszewski ◽  
Peter Sobolewski ◽  
Agnieszka Piegat ◽  
Miroslawa El Fray

<div><div><div><p>Nanocomposites based on poly(ethylene terephthalate-ethylene dilinoleate) (PET-DLA) copolymers of different hard to soft segment ratios (40:60 and 60:40) and three different carbon nanofillers of different aspect ratios (dimensions), as 0D carbon black, 1D multiwalled carbon nanotubes, and 2D graphene, have been prepared in situ during two-stage polymerization. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the chemical structures of the obtained nanocomposites. Scanning electron microscopy (SEM) indicated very good dispersions of all carbon nanofillers in both polymer matrices. Differential scanning calorimetry (DSC) results revealed that the addition of nano-sized fillers eliminated cold crystallization of materials containing 40% hard segments in polymer matrix. We found that the high aspect ratio, 1D nano-filler (multiwalled carbon nanotubes) strongly nucleated crystallization of materials containing 60% of hard segments. This nanofiller also yielded the greatest improvement in the Young’s modulus as assessed by tensile tests, both at 24 oC and 37 oC. We did not observe reduced bacterial adhesion to nanocomposites, likely due to increased roughness. Importantly, in vitro cytocompatibility tests with L929 murine fibroblasts demonstrated cell viability and growth on all materials except those containing carbon nanotubes. Finally, both high aspect ratio nanofillers markedly improved the barrier properties of obtained nanocomposites. New materials were successfully used for manufacturing of prototype of heart assist device, with pneumatic membrane made of graphene nanocomposite.</p></div></div></div>


2013 ◽  
Vol 716 ◽  
pp. 25-29
Author(s):  
Zhao Hua Xu ◽  
Heng Li

Biodegradable polylactide (PLA) composites/pristine multiwalled carbon nanotubes (P-CNT) composites with three different aspect ratios (length to diameter) are prepared by coagulation method. Isothermal crystallization and morphology of neat PLA and its composites are further investigated to clarify the effects of aspect ratio of CNT on the crystallization behaviors of PLA in its composites. Results show that the different aspect ratio CNT exhibit substantially different effects on PLA crystallization. It is interesting to find that small aspect ratio CNT (CNT-S) greatly promotes nucleation rate than big aspect ratio CNT (CNT-L).


2018 ◽  
Author(s):  
Zygmunt Staniszewski ◽  
Peter Sobolewski ◽  
Agnieszka Piegat ◽  
Miroslawa El Fray

<div><div><div><p>Nanocomposites based on poly(ethylene terephthalate-ethylene dilinoleate) (PET-DLA) copolymers of different hard to soft segment ratios (40:60 and 60:40) and three different carbon nanofillers of different aspect ratios (dimensions), as 0D carbon black, 1D multiwalled carbon nanotubes, and 2D graphene, have been prepared in situ during two-stage polymerization. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the chemical structures of the obtained nanocomposites. Scanning electron microscopy (SEM) indicated very good dispersions of all carbon nanofillers in both polymer matrices. Differential scanning calorimetry (DSC) results revealed that the addition of nano-sized fillers eliminated cold crystallization of materials containing 40% hard segments in polymer matrix. We found that the high aspect ratio, 1D nano-filler (multiwalled carbon nanotubes) strongly nucleated crystallization of materials containing 60% of hard segments. This nanofiller also yielded the greatest improvement in the Young’s modulus as assessed by tensile tests, both at 24 oC and 37 oC. We did not observe reduced bacterial adhesion to nanocomposites, likely due to increased roughness. Importantly, in vitro cytocompatibility tests with L929 murine fibroblasts demonstrated cell viability and growth on all materials except those containing carbon nanotubes. Finally, both high aspect ratio nanofillers markedly improved the barrier properties of obtained nanocomposites. New materials were successfully used for manufacturing of prototype of heart assist device, with pneumatic membrane made of graphene nanocomposite.</p></div></div></div>


2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document