High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer

Polymer ◽  
2007 ◽  
Vol 48 (8) ◽  
pp. 2203-2207 ◽  
Author(s):  
Yongjin Li ◽  
Hiroshi Shimizu
2016 ◽  
Vol 49 (4) ◽  
pp. 345-355 ◽  
Author(s):  
Mou’ad A Tarawneh ◽  
Sahrim Ahmad ◽  
Ruey Shan Chen

This article studies the enhancement in the properties of thermoplastic natural rubber (TPNR) reinforced by graphene oxide (GnO) and multiwalled carbon nanotubes (MWCNTs). TPNR is a blend of polypropylene and liquid natural rubber (NR), which is used as a compatibilizer and NR at a percentage of volume ratio 70:10:20, respectively. Using TPNR as the host matrix, a number of TPNR/carbon nanotubes (CNTs), TPNR/GnO, and hybrid TPNR/GnO/CNTs nanocomposites are processed and their mechanical, thermal, and electrical properties are characterized. The results extracted from tensile and impact test showed that tensile strength, Young’s modulus, and storage modulus of TPNR/GnO/MWCNTs hybrid nanocomposite increased as compared with TPNR composite and TPNR/GnO nanocomposite but lower than TPNR/MWCNTs nanocomposite. On the other hand, the elongation at break considerably decreased with increasing the content of both types of nanoparticles. Based on the experimental results, the thermal, electrical conductivity of a 0.5 wt% MWCNTs-reinforced sample increased as compared with a pure TPNR and other MWCNTs/GnO-reinforced composites. The improved dispersion properties of the nanocomposites can be due to altered interparticle interactions. MWCNTs, GnO, and MWCNTs–GnO networks are well combined to generate a synergistic effect that is shown by scanning electron microscopy micrographs. With the existence of this network, the mechanical, thermal, and electrical properties of the nanocomposite were improved significantly.


2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

2018 ◽  
Vol 69 (5) ◽  
pp. 1233-1239
Author(s):  
Raluca Madalina Senin ◽  
Ion Ion ◽  
Ovidiu Oprea ◽  
Rusandica Stoica ◽  
Rodica Ganea ◽  
...  

In this study, non-irradiated and weathered multiwalled carbon nanotubes (MWCNTs) obtained through irradiation, were studied as adsorbents for BPA, both nanomaterials being characterized before and after the adsorption process. The objectives of our investigation were to compare the characteristics of non-irradiated and irradiated MWCNTs, to evaluate the adsorption capacity of BPA by pristine and irradiated MWCNTs and to determine the variation of the kinetic, sorption and thermodynamic parameters during sorption process using both sorbents.


2020 ◽  
Vol 16 (7) ◽  
pp. 905-913
Author(s):  
Youyuan Peng ◽  
Qingshan Miao

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples. Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film. Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3). Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.


Sign in / Sign up

Export Citation Format

Share Document