2D-FEM analysis of rolls temperature field in induction heating process

Author(s):  
Ban Cai ◽  
Hao Wang ◽  
Ruibin Mei ◽  
Changsheng Li
2012 ◽  
Vol 28 (02) ◽  
pp. 73-81
Author(s):  
Xue-biao Zhang ◽  
Yu-long Yang ◽  
Yu-jun Liu

In shipyards, hull curved plate formation is an important stage with respect to productivity and accuracy control of curved plates. Because the power and its distribution of induction heat source are easier to control and reproduce, induction heating is expected to be applied in the line heating process. This paper studies the moveable induction heating process of steel plate and develops a numerical model of electromagneticthermal coupling analysis and the numerical results consistent with the experimental results. The numerical model is used to analyze the temperature changing rules and the influences on plate temperature field of heating speed of moveable induction heating of steel plate, and the following conclusions are drawn. First, the process of moveable induction heating of steel plate can be divided into three phases of initial state, quasi-steady state, and end state. The temperature difference between the top and bottom surfaces of the steel plate at the initial state is the biggest; it remains unchanged at the quasi-steady state and it is the smallest at the end state. Second, obvious end effect occurs when the edges of the steel plate are heated by the inductor, which causes a decrease in temperature difference between the top and bottom surfaces of the steel plate that is unfavorable for formation of pillow shape plates. Third, with the increase of heating speed, the temperature difference between the top and bottom surfaces of the steel plate increases gradually.


Author(s):  
Natalya A. Il`ina

The formulation and method of solution of the problem of time-optimal control of induction heating process of an unlimited plate with two control actions on the value of internal heat sources with technological constraint in relation to a one-dimensional model of the temperature field are proposed. The problem is solved under the conditions of a given accuracy of uniform approximation of the final temperature distribution over the thickness of the plate to the required. The method of finite integral transformations is used to search for the input-output characteristics of an object with distributed parameters with two control actions. The preliminary parameterization of control actions based on analytical optimality conditions in the form of the Pontryagin maximum principle is used. At the next stage reduction is performed to the problem of semi-infinite optimization, the solution of which is found using the alternance method. The alternance properties of the final resulting temperature state at the end of the optimal process lead to a basic system of relations, which, if there is additional information about the shape of the temperature distribution curve, is reduced to a system of equations that can be solved. An example of solving the problem of time-optimal control of temperature field of an unlimited plate with two offices is carried out in two stages. At first stage the case of induction heating without maximum temperature constraints is considered, at the second stage is carried out on the basis of the results of the first stage to obtain the solution subject to the limitation on the maximum temperature of the heated billet.


2009 ◽  
Vol 87-88 ◽  
pp. 16-21 ◽  
Author(s):  
Shi Jia Chang ◽  
Peng Cheng Xie ◽  
Xue Tao He ◽  
Wei Min Yang

A finite element model of temperature field coupled with electromagnetic field has been established based on induction heating theory including Maxwell’s equations, thermal conductivity differential equation and magnetic vector potential to simulate the induction heating process of barrel of injection molding machine by universal ANSYS software, and to obtain temperature field of the barrel related to time variation. The coupled thermal and electromagnetic field problem taking account of nonlinear materials characteristics related to temperature was discussed. The induction heating process of barrel was analyzed, and the temperature distribution and its variation with time were obtained.


2012 ◽  
Vol 215-216 ◽  
pp. 1111-1117
Author(s):  
Qing Lei Zhang ◽  
Bai Yu Zhao ◽  
Jing Kuan Guo

Based on induction heating theory, a finite elementmodel for electromagnetic-temperature field has been developed. The simulation of induction heating process in large size crankshaft shrink fitting is carried out by using FEA software ANSYS. With temperature and deformation distribution being calculated, the characteristics and effect factors in the induction heating process are also analyzed. In conclusion, the optimized crankshaft heating techonology could be estabished by adjusting technological parameters of the heating device. Specifically, frequency, current, heating position, etc.


2018 ◽  
Vol 18 (3) ◽  
pp. 408-419
Author(s):  
A J shokri ◽  
M H Tavakoli ◽  
A Sabouri Dodaran ◽  
M S Akhondi Khezrabad ◽  
◽  
...  

2021 ◽  
Vol 1047 (1) ◽  
pp. 012027
Author(s):  
A V Milov ◽  
V S Tynchenko ◽  
S O Kurashkin ◽  
V E Petrenko ◽  
D V Rogova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document