Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

2013 ◽  
Vol 114 (6) ◽  
pp. 063515 ◽  
Author(s):  
Yuguang Zhang ◽  
Jihong Wen ◽  
Honggang Zhao ◽  
Dianlong Yu ◽  
Li Cai ◽  
...  
2021 ◽  
Vol 263 (1) ◽  
pp. 5869-5877
Author(s):  
Xiang Wu ◽  
TengLong Jiang ◽  
JianWang Shao ◽  
GuoMing Deng ◽  
Chang Jin

Membrane-type acoustic metamaterials are thin films or plates composed of periodic units with small additional mass. A large number of studies have shown that these metamaterials exhibit tunable anti-resonance, and their transmission loss values are much higher than the corresponding quality laws. At present, most researches on membrane-type acoustic metamaterials focus on the unit cell, and the sound insulation frequency band can only be adjusted by adjusting the structural parameters and material parameters. In this paper, two kinds of acoustic metamaterials with different structures are designed, which are the center placement of the mass and the eccentric placement of the mass.The two structures have different sound insulation characteristics. By designing different array combinations of acoustic metamaterials, the sound insulation peaks of different frequency bands are obtained. This paper studies the corresponding combination law, and effectively realizes the adjustable sound insulation frequency band.


Author(s):  
Yonghu Huang ◽  
Mengyuan Lv ◽  
Wenjun Luo ◽  
Hongli Zhang ◽  
Daxin Geng ◽  
...  

2021 ◽  
Vol 252 ◽  
pp. 02028
Author(s):  
Jinyu Hao ◽  
Sheng Guo ◽  
Jian Cheng ◽  
Zhaopin Hu ◽  
Hongyu Cui

Low- and medium-frequency noise from ship cabins is difficult to control effectively. Excessive noise can seriously affect the acoustic stealth performance of ships. A novel membrane-type acoustic metamaterial is proposed in this paper with light weight and good sound insulation performance at low frequencies. The sound insulation performance of the metamaterial structure is analysed by using the acoustic-solid coupling module in COMSOL software. Then, the ability to change the sound insulation performance of membrane-type acoustic metamaterials with cell structure and material parameters is obtained. The research results in this paper provide powerful technical support for noise control in ship cabins.


2021 ◽  
Vol 1210 (1) ◽  
pp. 012001
Author(s):  
Xiaokai Yin ◽  
Yongchao Xu ◽  
Hongyu Cui

Abstract To solve the problem of low-frequency noise control in ship cabins, a new membrane-type acoustic metamaterial (MAM) with bulges on the surface of thin films is designed based on the characteristics of lightweight and low-frequency sound insulation of membrane-type acoustic metamaterials. The sound structure coupling module of COMSOL multiphysical field coupling software is used to analyse the sound insulation performance of MAMs. The sound insulation properties of the additional mass film and self-similar fractal convex structure are further discussed. The metamaterial structure studied in this paper has a better sound insulation effect than ordinary film, which provides strong technical support for ship cabin noise control.


2019 ◽  
Vol 136 ◽  
pp. 01031
Author(s):  
Ma Yuchao ◽  
Mo Juan ◽  
Xu Ke ◽  
Li Xiang ◽  
Sun Xinbo

As a light-weight and ultra-thin artificial material, acoustic metamaterial have more different attributes than natural material. The study of sound insulation for acoustic metamaterial is hot, and the membrane-type acoustic metamaterials supplement the deficiency of linear sound insulation materials. The physical material parameters (young modulus and loss factors)of base material of membrane-type acoustic metamaterials (PVC) is obtained by cantilever beam dynamic measurement method. The acoustic metamaterial sound insulation analysis is simulated by CAE method based on the material parameters that measured. The configuration of the simulation accuracy is measured on impedance tube, and the design work of the acoustic metamaterial sound insulation for transformer is provided. The relationship between sound insulation and the mass on membrane-type acoustic metamaterial at the different frequencies (100Hz to 500Hz) provides the reference to set sound insulation frequency.


AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045321
Author(s):  
Chi Xu ◽  
Hui Guo ◽  
Yinghang Chen ◽  
Xiaori Dong ◽  
Hongling Ye ◽  
...  

2022 ◽  
Vol 188 ◽  
pp. 108586
Author(s):  
Tuo Xing ◽  
Xiaoling Gai ◽  
Junjuan Zhao ◽  
Xianhui Li ◽  
Zenong Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document