Temperature dependence of the crystal-liquid interfacial free energy and the endpoint of the melting line

2013 ◽  
Vol 139 (22) ◽  
pp. 224703 ◽  
Author(s):  
Vladimir G. Baidakov ◽  
Sergey P. Protsenko ◽  
Azat O. Tipeev
2018 ◽  
Vol 60 (7) ◽  
pp. 1270 ◽  
Author(s):  
Л.П. Арефьева ◽  
И.Г. Шебзухова

AbstractThe technique for estimating the interfacial free energy of transition-metal nanocrystals and its anisotropy at the interface with their melts has been developed. The expression for the coordinate of the Gibbs’ interface, which takes into account the size dependence, has been derived. The interfacial free energy of crystal faces at the interface with the related melts of monomorphic 4d and 5d metals decreases nonlinearly with a decrease in the nanocrystal size and, at a certain size, disappears. At the nanocrystal radius of more than 10 nm, the interfacial free energy of the faces approaches that for a macrocrystal. The temperature dependence of the interfacial free energy at the crystal–melt interface is almost linear. The technique developed is shown to be in agreement with the known experimental data for mono- and polycrystals and applicable for estimating the orientational, temperature, and size dependences of the interfacial free energy at the interfaces of nano-, micro-, and macrocrystals with their melts.


Author(s):  
Wevernilson F. de Deus ◽  
Bruna M. de França ◽  
Josué Sebastian B. Forero ◽  
Alessandro E. C. Granato ◽  
Henning Ulrich ◽  
...  

1969 ◽  
Vol 47 (22) ◽  
pp. 4199-4206 ◽  
Author(s):  
R. E. Robertson ◽  
B. Rossall ◽  
S. E. Sugamori ◽  
L. Treindl

Rates of solvolysis of methanesulfonyl chloride and benzenesulfonyl chloride have been determined in H2O and D2O. The free energy, enthalpy, entropy, and heat capacity of activation were calculated. The exceptional accuracy of the data permitted an estimation of dΔCp≠/dT from a four parameter temperature dependence of the kinetic rates.From these data we conclude that both sulfonyl chlorides hydrolyse by the same mechanism (Sn2) The change in R from CH3 to C6H5 in RSO2Cl did not alter ΔCp≠ but ΔS≠ (20°) was changed from −8.32 to −13.25 cal deg−1 mole−1, respectively. The significance of this difference is attributed to the probability of bond formation rather than to differences in solvent reorganization.


2002 ◽  
Vol 731 ◽  
Author(s):  
Z. Guo ◽  
W. Sha

AbstractVarious theories have been developed to describe the diffusion-controlled growth of precipitates with shapes approximating needles or plates. The most comprehensive one is due to Ivantsov, Horvay and Cahn, and Trivedi (HIT theory), where all the factors that may influence the precipitate growth, i.e. diffusion, interface kinetics and capillarity, are accounted for within one equation. However, HIT theory was developed based on assumptions that transformation strain/stress and interfacial free energy are isotropic, which are not true in most of the real systems. An improved growth theory of precipitates of needle and plate shapes was developed in the present study. A new concept, the compression ratio, was introduced to account for influences from the anisotropy of transformation strain/stress and interfacial free energy on the precipitate morphology. Experimental evidence supports such compression effect. Precipitate growth kinetics were quantified using this concept. The improved HIT theory (IHIT theory) was then applied to study the growth of Widmanstatten austenite in ferrite in Fe-C-Mn steels. The calculated results agree well with the experimental observations.


Sign in / Sign up

Export Citation Format

Share Document