Monte Carlo study of molten salt with charge asymmetry near the electrode surface

2014 ◽  
Vol 140 (5) ◽  
pp. 054703 ◽  
Author(s):  
Jacek Kłos ◽  
Stanisław Lamperski
1999 ◽  
Vol 110 (11) ◽  
pp. 5346-5350 ◽  
Author(s):  
Dezső Boda ◽  
Douglas Henderson ◽  
Kwong-Yu Chan

2021 ◽  
Vol 11 (15) ◽  
pp. 6795
Author(s):  
Bruno Merk ◽  
Anna Detkina ◽  
Seddon Atkinson ◽  
Dzianis Litskevich ◽  
Gregory Cartland-Glover

Molten salt reactors have gained substantial interest in the last years due to their flexibility and their potential for simplified closed fuel cycle operations for massive net-zero energy production. However, a zero-power reactor experiment will be an essential first step into the process delivering this technology. The choice of the optimal reflector material is one of the key issues for such experiments since, on the one hand, it offers huge cost savings potential due to reduced fuel demand; on the other hand, an improper choice of the reflector material can have negative effects on the quality of the experiments. The choice of the reflector material is, for the first time, introduced through a literature review and a discussion of potential roles of the reflector. The 2D study of different potential reflector materials has delivered a first down-selection with SS304 as the representative for stainless steel, lead, copper, graphite, and beryllium oxide. A deeper look identified, in addition, iron-based material with a high Si content. The following evaluation of the power distribution has shown the strong influence of the moderating reflectors, creating a massively disturbed power distribution with a peak at the core boundary. This effect has been confirmed through a deeper analysis of the 2D multi-group flux distribution, which led to the exclusion of the BeO and the graphite reflector. The most promising materials identified were SS304, lead, and copper. The final 3D Monte Carlo study demonstrated that all three materials have the potential to reduce the required amount of fuel by up to 60% compared with NaCl, which has been used in previous studies and is now taken as the reference. An initial cost analysis has identified the SS304 reflector as the most attractive solution. The results of the 2D multi-group deterministic study and the 3D multi-group Monte Carlo study have been confirmed through a continuous energy Monte Carlo reference calculation, showing only minor differences.


Methodology ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Holger Steinmetz

Although the use of structural equation modeling has increased during the last decades, the typical procedure to investigate mean differences across groups is still to create an observed composite score from several indicators and to compare the composite’s mean across the groups. Whereas the structural equation modeling literature has emphasized that a comparison of latent means presupposes equal factor loadings and indicator intercepts for most of the indicators (i.e., partial invariance), it is still unknown if partial invariance is sufficient when relying on observed composites. This Monte-Carlo study investigated whether one or two unequal factor loadings and indicator intercepts in a composite can lead to wrong conclusions regarding latent mean differences. Results show that unequal indicator intercepts substantially affect the composite mean difference and the probability of a significant composite difference. In contrast, unequal factor loadings demonstrate only small effects. It is concluded that analyses of composite differences are only warranted in conditions of full measurement invariance, and the author recommends the analyses of latent mean differences with structural equation modeling instead.


2011 ◽  
Author(s):  
Patrick J. Rosopa ◽  
Amber N. Schroeder ◽  
Jessica Doll

1993 ◽  
Vol 3 (9) ◽  
pp. 1719-1728
Author(s):  
P. Dollfus ◽  
P. Hesto ◽  
S. Galdin ◽  
C. Brisset

1987 ◽  
Vol 48 (C5) ◽  
pp. C5-199-C5-202
Author(s):  
T. MIYASAKI ◽  
K. AIZAWA ◽  
H. AOKI ◽  
C. ITOH ◽  
M. OKAZAKI

Sign in / Sign up

Export Citation Format

Share Document