scholarly journals Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

2014 ◽  
Author(s):  
K. Troeger ◽  
R. Khanpour Darka ◽  
T. Neumeyer ◽  
V. Altstaedt
2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000235-000245
Author(s):  
David Shaddock ◽  
Liang Yin

Printed circuit boards have been reported to have limited lifetime at 200 to 250°C. Characterization and modeling high temperature laminates for application at 200 to 250°C was conducted to better quantify the mean lifetime using accelerated testing of key functional parameters. Life testing and model development was applied for via cyclic life, peel strength, and weight loss. Four high temperature laminates consisting of 2 types were evaluated. Via lifetime was characterization using Interconnect Stress Test (IST) coupons. Peel strength was tested using IPC IPC-TM-650 method 2.4.8c. Weight loss was characterized using isothermal aging. Comparison of lifetime is made between the laminate samples.


2018 ◽  
Vol 73 ◽  
pp. 556-565 ◽  
Author(s):  
R. Cayumil ◽  
M. Ikram-Ul-Haq ◽  
R. Khanna ◽  
R. Saini ◽  
P.S. Mukherjee ◽  
...  

2012 ◽  
Vol 32 (3) ◽  
pp. 568-574 ◽  
Author(s):  
Mingjiang Ni ◽  
Hanxi Xiao ◽  
Yong Chi ◽  
Jianhua Yan ◽  
Alfons Buekens ◽  
...  

2017 ◽  
Vol 2017 (HiTEN) ◽  
pp. 000057-000062
Author(s):  
Oriol Aviño-Salvado ◽  
Wissam Sabbah ◽  
Cyril Buttay ◽  
Hervé Morel ◽  
Pascal Bevilacqua

ABSTRACT This article presents the long term (1000 h) behaviour of two printed-circuit board materials (Panasonic R1755V, a high-TG glass-epoxy composite and Arlon 85N, a polyimide-based laminate) stored at high temperature (190 °C). Tests are performed in air and in nitrogen atmospheres. Electrical and physical measurements are performed regularly (once per week). Almost no degradation is observed for both materials, when stored in nitrogen. On the contrary, the board stored in air show the consequences of ageing. This is especially true for the glass-epoxy material, which becomes unusable after 2 weeks, because of large swelling.


2018 ◽  
Vol 78 ◽  
pp. 602-610 ◽  
Author(s):  
R. Khanna ◽  
G. Ellamparuthy ◽  
R. Cayumil ◽  
S.K. Mishra ◽  
P.S. Mukherjee

2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000100-000110 ◽  
Author(s):  
David Shaddock ◽  
Liang Yin

Printed circuit boards have been reported to have limited lifetime at 200 to 250°C. Characterization of high temperature laminates for application at 200 to 250°C was conducted to better quantify their lifetime using accelerated testing of key functional parameters. Eight high temperature laminates consisting of 3 material types was evaluated. Life testing was applied for via cyclic life, weight loss, peel strength, and surface insulation resistance. Via lifetime was characterization using Interconnect Stress Test (IST) coupons. Weight loss was measured at intervals during the life of the tests. Peel strength was tested using IPC IPC-TM-650 method 2.4.8c. Weight loss was characterized using isothermal aging. Comparison of lifetime is made between the laminate samples. The non-polyimide laminates exhibited the longer life times than polyimide laminates in most tests except peel strength. Peel strength is the life limiting parameter for the laminates. Parylene HT was found to improve stability in peel strength and weight loss of one PTFE laminate tested.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1697
Author(s):  
Yongjun Meng ◽  
Yongjie Liao ◽  
Zhirong Liu ◽  
Jing Chen ◽  
Xiaolong Yang ◽  
...  

Improper handling of waste printed circuit boards (PCBs) can cause serious pollution to the water and soil environments. In order to explore a new method of recycling waste PCBs, this study investigated the effect of PCBs and butadiene styrene rubber (SBR) on the rheological properties of neat bitumen. The dynamic shear rheological (DSR) test was used to study the effect of different PCB contents on the high-temperature rheological properties of SBR-modified bitumen. Fluorescence microscopy and Fourier-transform infrared spectroscopy were used to study the microstructure change law and modification mechanism of PCB and SBR composite modified bitumen. Finally, the feasibility of the bitumen properties was verified through a test of the bituminous mixture properties. The DSR test results showed that the addition of PCBs improves the elastic recovery modulus, dynamic shear modulus, and rutting factor of SBR-modified bitumen, indicating that the high-temperature properties were improved. Infrared spectroscopy analysis revealed that a new absorption peak was generated in the infrared spectrum of the compound bitumen after the addition of PCBs, and the intensity of the original absorption peak also changed, indicating that PCBs and SBR-modified bitumen were mainly physically blended and accompanied by a weak chemical reaction. It was further found that the absorption peak of the unsaturated C=C double bond was significantly enhanced, and the increase in the content of the unsaturated bond C=C in the main chain of the polymer significantly increases the stiffness of the bitumen. Macroscopically, the high-temperature rutting resistance was improved to a certain extent. The fluorescence diagram shows that when PCBs do not exceed 10%, the PCBs can form a homogeneous structure and be dispersed in SBR-modified bitumen. The road test of PCBs and SBR composite modified bituminous mixtures showed that PCBs can significantly improve the rutting resistance and water stability of SBR-modified bitumen at high temperatures at the recommended optimum content. The crack resistance at low temperatures is weakened but still meets actual engineering requirements. The correlation analysis between the properties of bitumen and bituminous mixtures is carried out based on grey correlation theory. The results show that the index of modified bitumen has a very good guiding effect on the bituminous mixture properties. The development of PCBs and SBR composite-modified bitumen provides a new practical method for recycling waste PCBs.


2018 ◽  
Vol 199 ◽  
pp. 831-839 ◽  
Author(s):  
Long Meng ◽  
Yiwei Zhong ◽  
Lei Guo ◽  
Zhe Wang ◽  
Kuiyuan Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document