Reliability of High Temperature Laminates

2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000100-000110 ◽  
Author(s):  
David Shaddock ◽  
Liang Yin

Printed circuit boards have been reported to have limited lifetime at 200 to 250°C. Characterization of high temperature laminates for application at 200 to 250°C was conducted to better quantify their lifetime using accelerated testing of key functional parameters. Eight high temperature laminates consisting of 3 material types was evaluated. Life testing was applied for via cyclic life, weight loss, peel strength, and surface insulation resistance. Via lifetime was characterization using Interconnect Stress Test (IST) coupons. Weight loss was measured at intervals during the life of the tests. Peel strength was tested using IPC IPC-TM-650 method 2.4.8c. Weight loss was characterized using isothermal aging. Comparison of lifetime is made between the laminate samples. The non-polyimide laminates exhibited the longer life times than polyimide laminates in most tests except peel strength. Peel strength is the life limiting parameter for the laminates. Parylene HT was found to improve stability in peel strength and weight loss of one PTFE laminate tested.

2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000235-000245
Author(s):  
David Shaddock ◽  
Liang Yin

Printed circuit boards have been reported to have limited lifetime at 200 to 250°C. Characterization and modeling high temperature laminates for application at 200 to 250°C was conducted to better quantify the mean lifetime using accelerated testing of key functional parameters. Life testing and model development was applied for via cyclic life, peel strength, and weight loss. Four high temperature laminates consisting of 2 types were evaluated. Via lifetime was characterization using Interconnect Stress Test (IST) coupons. Peel strength was tested using IPC IPC-TM-650 method 2.4.8c. Weight loss was characterized using isothermal aging. Comparison of lifetime is made between the laminate samples.


2014 ◽  
Vol 11 (4) ◽  
pp. 146-157 ◽  
Author(s):  
David Shaddock ◽  
Liang Yin

Characterization and modeling of high-temperature laminates for application at 200–250°C is reported to compare and better quantify the mean lifetime based on key functional parameters of via cycling, weight loss, peel strength, and surface insulation resistance (SIR). Life testing and models are applied for via cyclic life, peel strength, and weight loss. Five high-temperature laminates, consisting of three polyimides and two nonpolyimides, were evaluated. The polyimide laminates behaved similarly in via, weight loss, peel strength, and SIR testing with small variances. The nonpolyimides performed longer in via and weight loss. They degraded more rapidly than the polyimides in peel strength and failed in SIR, due to its flame retardant. A comparison of lifetime among the five laminates is presented.


2016 ◽  
Vol 65 (8) ◽  
pp. 1827-1835 ◽  
Author(s):  
Marco Lorenzo Valerio Tagliaferri ◽  
Alessandro Crippa ◽  
Simone Cocco ◽  
Marco De Michielis ◽  
Marco Fanciulli ◽  
...  

2005 ◽  
Vol 127 (4) ◽  
pp. 370-374 ◽  
Author(s):  
X. B. Chen

In electronics packaging, one of the key processes is dispensing fluid materials, such as adhesive, epoxy, encapsulant, onto substrates or printed circuit boards for the purpose of surface mounting or encapsulation. In order to precisely control the dispensing process, the understanding and characterization of the flow behavior of the fluid being dispensed is very important, as the behavior can have a significant influence on the dispensing process. However, this task has proven to be very challenging due to the fact that the fluids for electronics packaging usually exhibit the time-dependent rheological behavior, which has not been well defined in literature. In the paper a study on the characterization of the time-dependent rheological behavior of the fluids for electronics packaging is presented. In particular, a model is developed based on structural theory and then applied to the characterization of the decay and recovery of fluid behavior, which happen in the dispensing process due to the interruption of process. Experiments are carried out to verify the effectiveness of the model developed.


2018 ◽  
Vol 73 ◽  
pp. 556-565 ◽  
Author(s):  
R. Cayumil ◽  
M. Ikram-Ul-Haq ◽  
R. Khanna ◽  
R. Saini ◽  
P.S. Mukherjee ◽  
...  

2012 ◽  
Vol 32 (3) ◽  
pp. 568-574 ◽  
Author(s):  
Mingjiang Ni ◽  
Hanxi Xiao ◽  
Yong Chi ◽  
Jianhua Yan ◽  
Alfons Buekens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document