Edge waves and resonances in two-dimensional phononic crystal plates

2015 ◽  
Vol 117 (17) ◽  
pp. 174504 ◽  
Author(s):  
Jin-Chen Hsu ◽  
Chih-Hsun Hsu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hai-Fei Zhu ◽  
Xiao-Wei Sun ◽  
Ting Song ◽  
Xiao-Dong Wen ◽  
Xi-Xuan Liu ◽  
...  

AbstractIn view of the influence of variability of low-frequency noise frequency on noise prevention in real life, we present a novel two-dimensional tunable phononic crystal plate which is consisted of lead columns deposited in a silicone rubber plate with periodic holes and calculate its bandgap characteristics by finite element method. The low-frequency bandgap mechanism of the designed model is discussed simultaneously. Accordingly, the influence of geometric parameters of the phononic crystal plate on the bandgap characteristics is analyzed and the bandgap adjustability under prestretch strain is further studied. Results show that the new designed phononic crystal plate has lower bandgap starting frequency and wider bandwidth than the traditional single-sided structure, which is due to the coupling between the resonance mode of the scatterer and the long traveling wave in the matrix with the introduction of periodic holes. Applying prestretch strain to the matrix can realize active realtime control of low-frequency bandgap under slight deformation and broaden the low-frequency bandgap, which can be explained as the multiple bands tend to be flattened due to the localization degree of unit cell vibration increases with the rise of prestrain. The presented structure improves the realtime adjustability of sound isolation and vibration reduction frequency for phononic crystal in complex acoustic vibration environments.


2006 ◽  
Vol 88 (26) ◽  
pp. 263505 ◽  
Author(s):  
Manzhu Ke ◽  
Zhengyou Liu ◽  
Pei Pang ◽  
Wengang Wang ◽  
Zhigang Cheng ◽  
...  

2005 ◽  
Vol 72 (1) ◽  
Author(s):  
Honggang Zhao ◽  
Yaozong Liu ◽  
Gang Wang ◽  
Jihong Wen ◽  
Dianlong Yu ◽  
...  

2011 ◽  
Vol 254 ◽  
pp. 195-198
Author(s):  
Nan Wang ◽  
Fu Li Hsiao ◽  
Moorthi Palaniapan ◽  
Ming Lin Julius Tsai ◽  
Jeffrey B.W. Soon ◽  
...  

Two-dimensional (2-D) Silicon phononic crystal (PnC) slab of a square array of cylindrical air holes in a 10μm thick free-standing silicon plate with line defects is characterized as a cavity-mode PnC resonator. Piezoelectric aluminum nitride (AlN) film is deployed as the inter-digital transducers (IDT) to transmit and detect acoustic waves, thus making the whole microfabrication process CMOS-compatible. Both the band structure of the PnC and the transmission spectrum of the proposed PnC resonator are analyzed and optimized using finite element method (FEM). The measured quality factor (Q factor) of the microfabricated PnC resonator is over 1,000 at its resonant frequency of 152.46MHz. The proposed PnC resonator shows promising acoustic resonance characteristics for RF communications and sensing applications.


Author(s):  
Osama R. Bilal ◽  
Mahmoud I. Hussein

The topological distribution of the material phases inside the unit cell composing a phononic crystal has a significant effect on its dispersion characteristics. This topology can be engineered to produce application-specific requirements. In this paper, a specialized genetic-algorithm-based topology optimization methodology for the design of two-dimensional phononic crystals is presented. Specifically the target is the opening and maximization of band gap size for (i) out-of-plane waves, (ii) in-plane waves and (iii) both out-of-plane and in-plane waves simultaneously. The methodology as well as the resulting designs are presented.


2007 ◽  
Vol 76 (5) ◽  
Author(s):  
Zhaojian He ◽  
Shasha Peng ◽  
Feiyan Cai ◽  
Manzhu Ke ◽  
Zhengyou Liu

2010 ◽  
Vol 81 (21) ◽  
Author(s):  
Abdelkrim Khelif ◽  
Younes Achaoui ◽  
Sarah Benchabane ◽  
Vincent Laude ◽  
Boujamaa Aoubiza

Sign in / Sign up

Export Citation Format

Share Document