Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. I. Base flow

2015 ◽  
Vol 27 (7) ◽  
pp. 077101 ◽  
Author(s):  
Zacharias Stelzer ◽  
David Cébron ◽  
Sophie Miralles ◽  
Stijn Vantieghem ◽  
Jérôme Noir ◽  
...  
2015 ◽  
Vol 27 (8) ◽  
pp. 084108 ◽  
Author(s):  
Zacharias Stelzer ◽  
Sophie Miralles ◽  
David Cébron ◽  
Jérôme Noir ◽  
Stijn Vantieghem ◽  
...  

2018 ◽  
Vol 859 ◽  
pp. 516-542 ◽  
Author(s):  
Calum S. Skene ◽  
Peter J. Schmid

A linear numerical study is conducted to quantify the effect of swirl on the response behaviour of premixed lean flames to general harmonic excitation in the inlet, upstream of combustion. This study considers axisymmetric M-flames and is based on the linearised compressible Navier–Stokes equations augmented by a simple one-step irreversible chemical reaction. Optimal frequency response gains for both axisymmetric and non-axisymmetric perturbations are computed via a direct–adjoint methodology and singular value decompositions. The high-dimensional parameter space, containing perturbation and base-flow parameters, is explored by taking advantage of generic sensitivity information gained from the adjoint solutions. This information is then tailored to specific parametric sensitivities by first-order perturbation expansions of the singular triplets about the respective parameters. Valuable flow information, at a negligible computational cost, is gained by simple weighted scalar products between direct and adjoint solutions. We find that for non-swirling flows, a mode with azimuthal wavenumber $m=2$ is the most efficiently driven structure. The structural mechanism underlying the optimal gains is shown to be the Orr mechanism for $m=0$ and a blend of Orr and other mechanisms, such as lift-up, for other azimuthal wavenumbers. Further to this, velocity and pressure perturbations are shown to make up the optimal input and output showing that the thermoacoustic mechanism is crucial in large energy amplifications. For $m=0$ these velocity perturbations are mainly longitudinal, but for higher wavenumbers azimuthal velocity fluctuations become prominent, especially in the non-swirling case. Sensitivity analyses are carried out with respect to the Mach number, Reynolds number and swirl number, and the accuracy of parametric gradients of the frequency response curve is assessed. The sensitivity analysis reveals that increases in Reynolds and Mach numbers yield higher gains, through a decrease in temperature diffusion. A rise in mean-flow swirl is shown to diminish the gain, with increased damping for higher azimuthal wavenumbers. This leads to a reordering of the most effectively amplified mode, with the axisymmetric ($m=0$) mode becoming the dominant structure at moderate swirl numbers.


Author(s):  
Yancheng You ◽  
Kai Oßwald ◽  
Heinrich Lüdeke ◽  
Volker Hannemann
Keyword(s):  

2014 ◽  
Vol 670-671 ◽  
pp. 613-616 ◽  
Author(s):  
Jabrane Belabid ◽  
Abdelkhalek Cheddadi

This work presents a numerical study of the natural convection in a saturated porous medium bounded by two horizontal concentric cylinders. The governing equations (in the stream function and temperature formulation) were solved using the ADI (Alternating Direction Implicit) method and the Samarskii-Andreev scheme. A comparison between the two methods is conducted. In both cases, the results obtained for the heat transfer rate given by the Nusselt number are in a good agreement with the available published data.


2011 ◽  
Vol 674 ◽  
pp. 132-162 ◽  
Author(s):  
C. MISTRANGELO

A numerical study has been carried out to analyse liquid metal flows in a sudden expansion of electrically conducting rectangular ducts under the influence of an imposed uniform magnetic field. Separation phenomena are investigated by selecting a reference Reynolds number and by increasing progressively the applied magnetic field. The magnetic effects leading to the reduction of the size of separation zones that form behind the cross-section enlargement are studied by considering modifications of flow topology, streamline patterns and electric current density distribution. In the range of parameters investigated, the magnetohydrodynamic flow undergoes substantial transitions from a hydrodynamic-like flow to one dominated by electromagnetic forces, where the influence of inertia and viscous forces is confined to thin internal layers aligned with the magnetic field and to boundary layers that form along the walls. Scaling laws describing the reattachment length and the pressure drop in the sudden expansion are derived for intense magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document