Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

Author(s):  
Norio Watanabe ◽  
Yuji Tsuburaya ◽  
Akihiro Shimada ◽  
Sadao Aoki
Keyword(s):  
X Ray ◽  
2012 ◽  
Vol 20 (21) ◽  
pp. 23361 ◽  
Author(s):  
Benedicta D. Arhatari ◽  
Grant van Riessen ◽  
Andrew Peele

1966 ◽  
Vol 38 (12) ◽  
pp. 1741-1745 ◽  
Author(s):  
R. F. Karlak ◽  
D. S. Burnett

1957 ◽  
Vol 1 ◽  
pp. 39-58
Author(s):  
Ralph H. Hiltz ◽  
Stanley L. Lopata

AbstractIn view of present difficulties encountered in met alio graphic methods of phase analysis of titanium and its alloys, the possibility of utilizing integrated X-ray intensities for phase analysis was investigated. Power Formula variables were calculated for titanium, and relative areas of three alpha and one beta peak were determined. Recorded X-ray intensities were obtained from a large number of titanium specimens. The recorded intensities were analyzed and the results compared with those from metallographic analysis. The errors in the method arising from the nature of titanium, texture and peak overlapping, were studied and where possible, compensated for by adjusting the method of measurement and calculation.


Author(s):  
Samiran Pramanik ◽  
Soumen Ghosh ◽  
Arkaprovo Roy ◽  
Ramanuj Mukherjee ◽  
Alok Kumar Mukherjee

AbstractQuantitative phase composition and morphological characterization of 12 human gallbladder stones (GS1–GS12) retrieved from patients of eastern India have been carried out using IR-spectroscopy, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). The FTIR spectra indicated that the primary composition of gallstones studied was cholesterol. X-ray powder diffraction study revealed cholesterol monohydrate (CHM) as the major crystalline phase in GS1–GS12. The Rietveld analysis showed that nine of the gallstones were composed exclusively of CHM, while the remaining three stones contained in addition to CHM, small amounts (4.2–10.6 wt%) of calcium carbonate as aragonite and vaterite. The crystallite size of CHM in GS1–GS12 varied between 82(6) and 249(3) nm. The SEM images of gallstones showed different crystal habits of CHM such as plates, thin rods, rectangular and hexagonal blocks, which resulted into different levels of agglomeration at the mesoscopic scale. Presence of numerous parasitic eggs with a typical muskmelon surface in three gallstones (GS2, GS7 and GS9) suggests possible association between the liver fluke infection and biliary stone formation in these patients. To the best of our knowledge, the study constitutes the first report of X-ray quantitative phase analysis of gallstones using the Rietveld methodology.


Sign in / Sign up

Export Citation Format

Share Document