Observations of zonal flows in electrode biasing experiments on the Joint Texas Experimental tokamak

2016 ◽  
Vol 23 (4) ◽  
pp. 042305 ◽  
Author(s):  
H. G. Shen ◽  
T. Lan ◽  
Z. P. Chen ◽  
D. F. Kong ◽  
H. L. Zhao ◽  
...  
Author(s):  
Vladimir G. Gnevyshev ◽  
Sergei I. Badulin ◽  
Aleksey V. Koldunov ◽  
Tatyana V. Belonenko
Keyword(s):  

Icarus ◽  
1999 ◽  
Vol 137 (2) ◽  
pp. 357-359 ◽  
Author(s):  
W.B. Hubbard

2014 ◽  
Vol 44 (3) ◽  
pp. 922-943 ◽  
Author(s):  
V. O. Ivchenko ◽  
S. Danilov ◽  
B. Sinha ◽  
J. Schröter

Abstract Integral constraints for momentum and energy impose restrictions on parameterizations of eddy potential vorticity (PV) fluxes. The impact of these constraints is studied for a wind-forced quasigeostrophic two-layer zonal channel model with variable bottom topography. The presence of a small parameter, given by the ratio of Rossby radius to the width of the channel, makes it possible to find an analytical/asymptotic solution for the zonally and time-averaged flow, given diffusive parameterizations for the eddy PV fluxes. This solution, when substituted in the constraints, leads to nontrivial explicit restrictions on diffusivities. The system is characterized by four dimensionless governing parameters with a clear physical interpretation. The bottom form stress, the major term balancing the external force of wind stress, depends on the governing parameters and fundamentally modifies the restrictions compared to the flat bottom case. While the analytical solution bears an illustrative character, it helps to see certain nontrivial connections in the system that will be useful in the analysis of more complicated models of ocean circulation. A numerical solution supports the analytical study and confirms that the presence of topography strongly modifies the eddy fluxes.


2020 ◽  
Vol 86 (4) ◽  
Author(s):  
Hongxuan Zhu ◽  
Yao Zhou ◽  
I. Y. Dodin

The Dimits shift is the shift between the threshold of the drift-wave primary instability and the actual onset of turbulent transport in a magnetized plasma. It is generally attributed to the suppression of turbulence by zonal flows, but developing a more detailed understanding calls for consideration of specific reduced models. The modified Terry–Horton system has been proposed by St-Onge (J. Plasma Phys., vol. 83, 2017, 905830504) as a minimal model capturing the Dimits shift. Here, we use this model to develop an analytic theory of the Dimits shift and a related theory of the tertiary instability of zonal flows. We show that tertiary modes are localized near extrema of the zonal velocity $U(x)$ , where $x$ is the radial coordinate. By approximating $U(x)$ with a parabola, we derive the tertiary-instability growth rate using two different methods and show that the tertiary instability is essentially the primary drift-wave instability modified by the local $U'' \doteq {\rm d}^2 U/{\rm d} x^2 $ . Then, depending on $U''$ , the tertiary instability can be suppressed or unleashed. The former corresponds to the case when zonal flows are strong enough to suppress turbulence (Dimits regime), while the latter corresponds to the case when zonal flows are unstable and turbulence develops. This understanding is different from the traditional paradigm that turbulence is controlled by the flow shear $| {\rm d} U / {\rm d} x |$ . Our analytic predictions are in agreement with direct numerical simulations of the modified Terry–Horton system.


Sign in / Sign up

Export Citation Format

Share Document