Rapid Beat Generation of Large-Scale Zonal Flows by Drift Waves: A Nonlinear Generic Paradigm

2004 ◽  
Vol 93 (6) ◽  
Author(s):  
D. R. McCarthy ◽  
C. N. Lashmore-Davies ◽  
A. Thyagaraja
2008 ◽  
Vol 74 (3) ◽  
pp. 381-389 ◽  
Author(s):  
Yu. A. ZALIZNYAK ◽  
A. I. YAKIMENKO ◽  
V. M. LASHKIN

AbstractThe generation of large-scale zonal flows by small-scale electrostatic drift waves in electron temperature gradient driven turbulence model is considered. The generation mechanism is based on the modulational instability of a finite amplitude monochromatic drift wave. The threshold and growth rate of the instability as well as the optimal spatial scale of zonal flow are obtained.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 635-643 ◽  
Author(s):  
T. D. KALADZE ◽  
O. A. POKHOTELOV ◽  
M. SHAD

AbstractThe generation of large-scale zonal flows by small-scale electrostatic drift waves in electron–positron–ion (EPI) plasma is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude drift waves. To describe this process, the Hasegawa–Mima equation generalized for the case of EPI plasma is used. Explicit expressions for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. Dependence of the growth rate on the spectrum purity of the wave packet is also investigated. The relevant instability conditions are determined.


Author(s):  
Jonathan Skipp ◽  
Sergey Nazarenko

Abstract We study the thermodynamic equilibrium spectra of the Charney- Hasegawa-Mima (CHM) equation in its weakly nonlinear limit. In this limit, the equation has three adiabatic invariants, in contrast to the two invariants of the 2D Euler or Gross-Pitaevskii equations, which are examples for comparison. We explore how the third invariant considerably enriches the variety of equilibrium spectra that the CHM system can access. In particular we characterise the singular limits of these spectra in which condensates occur, i.e. a single Fourier mode (or pair of modes) accumulate(s) a macroscopic fraction of the total invariants. We show that these equilibrium condensates provide a simple explanation for the characteristic structures observed in CHM systems of finite size: highly anisotropic zonal flows, large-scale isotropic vortices, and vortices at small scale. We show how these condensates are associated with combinations of negative thermodynamic potentials (e.g. temperature).


Author(s):  
Theodore G. Shepherd

The chapter begins with a phenomenological treatment of the observed atmospheric circulation. It then goes on to discuss how the barotropic model arises as a so-calledbalanced model of the slow, vorticity-driven dynamics, from the more general shallowwater model which also admits inertia-gravity waves. This is important because large-scale atmospheric turbulence exhibits aspects of both balanced and unbalanced dynamics. Because of the first-order importance of zonal flows in the atmospheric general circulation, the large-scale turbulence is highly inhomogeneous, and is shaped by the nature of the interaction between zonal flows and Rossby waves described eloquently by Michael McIntyre as a wave-turbulence jigsaw puzzle. This motivates a review of the barotropic theory of wave, mean-flow interaction, which is underpinned by the Hamiltonian structure of geophysical fluid dynamics.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 314 ◽  
Author(s):  
Arakel Petrosyan ◽  
Dmitry Klimachkov ◽  
Maria Fedotova ◽  
Timofey Zinyakov

The purpose of plasma astrophysics is the study and description of the flow of rotating plasma in order to understand the evolution of various objects in the universe, from stars and planetary systems to galaxies and galaxy clusters. A number of new applications and observations have appeared in recent years and actualized the problem of studying large-scale magnetohydrodynamic flows, such as a thin layer under the convective zone of the sun (solar tachocline), propagation of accreting matter in neutron stars, accretion disks in astrophysics, dynamics of neutron star atmospheres, and magnetoactive atmospheres of exoplanets tidally locked with their host star. The article aims to discuss a fundamental problem in the description and study of multiscale astrophysical plasma flows by studying its general properties characterizing different objects in the universe. We are dealing with the development of geophysical hydrodynamic ideas concerning substantial differences in plasma flow behavior due to the presence of magnetic fields and stratification. We discuss shallow water magnetohydrodynamic equations (one-layer and two-layer models) and two-dimensional magnetohydrodynamic equations as a basis for studying large-scale flows in plasma astrophysics. We discuss the novel set of equations in the external magnetic field. The following topics will be addressed: Linear theory of magneto-Rossby waves, three-wave interactions and related parametric instabilities, zonal flows, and turbulence.


2018 ◽  
Vol 84 (2) ◽  
Author(s):  
E. G. Highcock ◽  
N. R. Mandell ◽  
M. Barnes ◽  
W. Dorland

The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A twofold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.


2018 ◽  
Vol 617 ◽  
pp. A117 ◽  
Author(s):  
A. Riols ◽  
G. Lesur

Context. Magnetohydrodynamic (MHD) turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical settling, and is one possible origin of the large scale axisymmetric structures, such as rings, recently imaged by ALMA and SPHERE. Among the variety of MHD processes in discs, the magnetorotational instability (MRI) has raised particular interest since it provides a source of turbulence and potentially organizes the flow into large scale structures. However, the weak ionization of discs prevents the MRI from being excited beyond 1 AU. Moreover, the low velocity dispersion observed in CO and strong sedimentation of millimetre dust measured in T-Tauri discs are in contradiction with predictions based on ideal MRI turbulence. Aims. In this paper, we study the effects of non-ideal MHD and magnetized winds on the dynamics and sedimentation of dust grains. We consider a weakly ionized plasma subject to ambipolar diffusion characterizing the disc outer regions (≫1 AU). Methods. To compute the dust and gas motions, we performed numerical MHD simulations in the stratified shearing box, using a modified version of the PLUTO code. We explored different grain sizes from micrometre to few centimetres and different disc vertical magnetizations with plasma beta ranging from 103 to 105. Results. Our simulations show that the mm-cm dust is contained vertically in a very thin layer, with typical heightscale ≲0.4 AU at R = 30 AU, compatible with recent ALMA observations. Horizontally, the grains are trapped within the pressure maxima (or zonal flows) induced by ambipolar diffusion, leading to the formation of dust rings. For micrometre grains and strong magnetization, we find that the dust layer has a size comparable to the disc heightscale H. In this regime, dust settling cannot be explained by a simple 1D diffusion theory but results from a large scale 2D circulation induced by both MHD winds and zonal flows. Conclusions. Our results suggest that non-ideal MHD effects and MHD winds associated with zonal flows play a major role in shaping the radial and vertical distribution of dust in protoplanetary discs. Leading to effective accretion efficiency α ≃ 10−3–10−1, non-ideal MHD models are also a promising avenue to reconcile the low turbulent activity measured in discs with their relatively high accretion rates.


1987 ◽  
Vol 183 ◽  
pp. 467-509 ◽  
Author(s):  
Theodore G. Shepherd

The theory of homogeneous barotropic beta-plane turbulence is here extended to include effects arising from spatial inhomogeneity in the form of a zonal shear flow. Attention is restricted to the geophysically important case of zonal flows that are barotropically stable and are of larger scale than the resulting transient eddy field.Because of the presumed scale separation, the disturbance enstrophy is approximately conserved in a fully nonlinear sense, and the (nonlinear) wave-mean-flow interaction may be characterized as a shear-induced spectral transfer of disturbance enstrophy along lines of constant zonal wavenumber k. In this transfer the disturbance energy is generally not conserved. The nonlinear interactions between different disturbance components are turbulent for scales smaller than the inverse of Rhines's cascade-arrest scale κβ≡ (β0/2urms)½ and in this regime their leading-order effect may be characterized as a tendency to spread the enstrophy (and energy) along contours of constant total wavenumber κ ≡ (k2 + l2)½. Insofar as this process of turbulent isotropization involves spectral transfer of disturbance enstrophy across lines of constant zonal wavenumber k, it can be readily distinguished from the shear-induced transfer which proceeds along them. However, an analysis in terms of total wavenumber K alone, which would be justified if the flow were homogeneous, would tend to mask the differences.The foregoing theoretical ideas are tested by performing direct numerical simulation experiments. It is found that the picture of classical beta-plane turbulence is altered, through the effect of the large-scale zonal flow, in the following ways: (i) while the turbulence is still confined to KKβ, the disturbance field penetrates to the largest scales of motion; (ii) the larger disturbance scales K < Kβ exhibit a tendency to meridional rather than zonal anisotropy, namely towards v2 > u2 rather than vice versa; (iii) the initial spectral transfer rate away from an isotropic intermediate-scale source is significantly enhanced by the shear-induced transfer associated with straining by the zonal flow. This last effect occurs even when the large-scale shear appears weak to the energy-containing eddies, in the sense that dU/dy [Lt ] κ for typical eddy length and velocity scales.


Sign in / Sign up

Export Citation Format

Share Document