Interaction of a two-layer vortex pair with a submerged cylindrical obstacle in a two layer rotating fluid

2016 ◽  
Vol 28 (5) ◽  
pp. 056602 ◽  
Author(s):  
Eugene A. Ryzhov ◽  
Mikhail A. Sokolovskiy
1998 ◽  
Vol 354 ◽  
pp. 69-100 ◽  
Author(s):  
A. H. M. EISENGA ◽  
R. VERZICCO ◽  
G. J. F. VAN HEIJST

The dynamics of a vortex ring moving orthogonally to the rotation vector of a uniformly rotating fluid is analysed by laboratory experiments and numerical simulations. In the rotating system the vortex ring describes a curved trajectory, turning in the opposite sense to the system's anti-clockwise rotation. This behaviour has been explained by using the analogy with the motion of a sphere in a rotating fluid for which Proudman (1916) computed the forces acting on the body surface. Measurements have revealed that the angular velocity of the vortex ring in its curved trajectory is opposite to the background rotation rate, so that the vortex has a fixed orientation in an inertial frame of reference and that the curvature increases proportionally to the rotation rate.The dynamics of the vorticity of the vortex ring is affected by the background rotation in such a way that the part of the vortex core in clockwise rotation shrinks while the anti-clockwise-rotating core part widens. By this opposite forcing on either side of the vortex core Kelvin waves are excited, travelling along the toroidal axis of the vortex ring, with a net mass flow which is responsible for the accumulation of passive scalars on the anti-clockwise-rotating core part. In addition, the curved motion of the vortex ring modifies its self-induced strain field, resulting in stripping of vorticity filaments at the front of the vortex ring from the anti-clockwise-rotating core part and at the rear from the core part in clockwise rotation. Vortex lines, being deflected by the main vortex ring due to induction of relative vorticity, are stretched by the local straining field and form a horizontally extending vortex pair behind the vortex ring. This vortex pair propagates by its self-induced motion towards the clockwise-rotating side of the vortex ring and thus contributes to the deformation of the ring core. The deflection of vortex lines from the main vortex ring persists during the whole motion and is responsible for the gradual erosion of the coherent toroidal structure of the initial vortex ring.


AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1439-1445 ◽  
Author(s):  
D. C. Lewellen ◽  
W. S. Lewellen ◽  
L. R. Poole ◽  
C. A. Hostetler ◽  
R. J. DeCoursey ◽  
...  

Tellus ◽  
1971 ◽  
Vol 23 (1) ◽  
pp. 82-86
Author(s):  
Robert R. Long

Author(s):  
Dmitry Elkin ◽  
Dmitry Elkin ◽  
Andrey Zatsepin ◽  
Andrey Zatsepin

Laboratory investigation of eddy formation mechanism due to spatially non-uniform wind impact was fulfilled. Experiment was provided in a cylindrical and a square form tank filled with homogeneous or stratified fluid and displaced on a rotating platform. In the absence of the platform rotation, an impact of the single air jet lead to the formation of a symmetric vortex dipole structure that occupied the whole water area in the tank. In the presence of the platform rotation, a compact anticyclonic eddy was formed in a part of the dipole with anticyclonic vorticity, while in a part with cyclonic vorticity no any compact eddy was observed. The laboratory results were successfully compared with the field observation results fulfilled in the at the Black Sea coastal zone near Gelendzhik.


Author(s):  
Dong Li ◽  
Ziming Xu ◽  
Ke Zhang ◽  
Zeyu Zhang ◽  
Jinxin Zhou ◽  
...  

Environmental crosswind can greatly affect the development of aircraft wake vortex pair. Previous numerical simulations and experiments have shown that the nonlinear vertical shear of the crosswind velocity can affect the dissipation rate of the aircraft wake vortex, causing each vortex of the vortex pair descent with different velocity magnitude, which will lead to the asymmetrical settlement and tilt of the wake vortex pair. Through numerical simulations, this article finds that uniform crosswind convection and linear vertical shear crosswind convection can also have an effect on the strength of the vortex. This effect is inversely proportional to the cube of the vortex spacing, so it is more intense on small separation vortex pair. In addition, the superposition of crosswind and vortex-induced velocities will lead to the asymmetrical pressure distribution around the vortex pair, which will also cause the tilt of the vortex pair. Furthermore, a new analysis method for wake vortex is proposed, which can be used to predict the vortex trajectory.


2021 ◽  
Vol 917 ◽  
Author(s):  
Anne R. Nielsen ◽  
Morten Andersen ◽  
Jesper S. Hansen ◽  
Morten Brøns

Abstract


Sign in / Sign up

Export Citation Format

Share Document