scholarly journals Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

Author(s):  
Masahiko Tanaka ◽  
Yoshio Katsuya ◽  
Osami Sakata
2003 ◽  
Vol 18 (1) ◽  
pp. 32-35 ◽  
Author(s):  
Yanan Xiao ◽  
Fujio Izumi ◽  
Timothy Graber ◽  
P. James Viccaro ◽  
Dale E. Wittmer

A computer program for refining anomalous scattering factors using x-ray powder diffraction data was revised on the basis of the latest version of a versatile pattern-fitting system, RIETAN-2000. The effectiveness of the resulting program was confirmed by applying it to simulated and measured powder-diffraction patterns of Mn3O4 taken at a synchrotron light source.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 894
Author(s):  
Yana Tzvetanova ◽  
Ognyan Petrov ◽  
Thomas Kerestedjian ◽  
Mihail Tarassov

The Rietveld method using X-ray powder diffraction data was applied to selected skarn samples for quantitative determination of the present minerals. The specimens include garnet, clinopyroxene–garnet, plagioclase–clinopyroxene–wollastonite–garnet, plagioclase–clinopyroxene–wollastonite, plagioclase–clinopyroxene–wollastonite–epidote, and plagioclase–clinopyroxene skarns. The rocks are coarse- to fine-grained and characterized by an uneven distribution of the constituent minerals. The traditional methods for quantitative analysis (point-counting and norm calculations) are not applicable for such inhomogeneous samples containing minerals with highly variable chemical compositions. Up to eight individual mineral phases have been measured in each sample. To obtain the mineral quantities in the skarn rocks preliminary optical microscopy and chemical investigation by electron probe microanalysis (EPMA) were performed for the identification of some starting components for the Rietveld analysis and to make comparison with the Rietveld X-ray powder diffraction results. All of the refinements are acceptable, as can be judged by the standard indices of agreement and by the visual fits of the observed and calculated diffraction profiles. A good correlation between the refined mineral compositions and the data of the EPMA measurements was achieved.


2013 ◽  
Vol 46 (3) ◽  
pp. 649-655 ◽  
Author(s):  
Sachiko Maki ◽  
Eiji Nishibori ◽  
Daisuke Kawaguchi ◽  
Makoto Sakata ◽  
Masaki Takata ◽  
...  

An algorithm for determining the element-selective charge density has been developed using the maximum entropy method (MEM), Rietveld analysis and synchrotron X-ray multi-wavelength anomalous powder diffraction data. This article describes in detail both experimental and analytical aspects of the developed method. A structural study of yttrium mono-metallofullerene, Y@C82, 1:1 co-crystallized with toluene using the present technique is reported in order to demonstrate the applicability of the method even when only medium resolution data are available (d> 1.32 Å). Element-selective MEM charge density maps, computed from synchrotron X-ray powder diffraction data collected at three distinct wavelengths around the yttriumK-absorption edge (∼0.727 A), are employed for determining three crystallographic sites of the disordered yttrium.


2009 ◽  
Vol 65 (6) ◽  
pp. i44-i44 ◽  
Author(s):  
Zhen-Hua Liang ◽  
Kai-Bin Tang ◽  
Qian-Wang Chen ◽  
Hua-Gui Zheng

Rubidium dicalcium triniobate(V), RbCa2Nb3O10, has been synthesized by solid-state reaction and its crystal structure refined from X-ray powder diffraction data using Rietveld analysis. The compound is a three-layer perovskite Dion–Jacobson phase with the perovskite-like slabs derived by termination of the three-dimensional CaNbO3perovskite structure along theabplane. The rubidium ions (4/mmmsymmetry) are located in the interstitial space.


2007 ◽  
Vol 22 (3) ◽  
pp. 253-255 ◽  
Author(s):  
Franz Weitzer ◽  
Hailin Chen ◽  
Julius C. Schuster

Crystal structure of the triclinic ternary phase Cr4(Al, Si)11 was investigated by full-profile Rietveld analysis of powder diffraction data. Four hundred eighty-four reflections were refined to a final RBragg value of 5.00%. Cr4(Al, Si)11 is isostructural to Mn4Al11. Silicon atoms enter into the structure by partially replacing aluminium on the Al(1) and Al(2) sites.


2007 ◽  
Vol 40 (4) ◽  
pp. 710-715 ◽  
Author(s):  
Maxim Avdeev ◽  
James Jorgensen ◽  
Simine Short ◽  
Robert B. Von Dreele

Time-of-flight neutron powder diffraction data for NIST Standard Reference Materials have been used to study the adequacy of the peak profile model obtained from a convolution of back-to-back exponentials with a pseudo-Voigt function that is widely used in Rietveld refinement. It is shown that, while the empirical models ford-spacing (wavelength) dependence of Gaussian and Lorentzian components of the pseudo-Voigt function and rise exponent are satisfactory, the behavior of the decay exponent and peak positions demonstrate significant deviations, which can be corrected by numerical methods. The practical side of this process as implemented inGSASandFULLPROFand the effect of the corrections on the Rietveld analysis results are discussed.


2006 ◽  
Vol 62 (5) ◽  
pp. i112-i113 ◽  
Author(s):  
Xiao-Xuan Liu ◽  
Cheng-Xin Wang ◽  
Shu-Ming Luo ◽  
Jin-Xiao Mi

Nonalithium trigallium(III) tris[pyrophosphate(V)] diphosphate(V), Li9Ga3(P2O7)3(PO4)2, has been synthesized by a hydrothermal method and its crystal structure solved from X-ray powder diffraction data using Rietveld analysis. The structure is based on separate layers parallel to (001), consisting of GaO6 octahedra that share corners with PO4 tetrahedra and P2O7 groups. The lithium ions are located in the interstitial space.


Sign in / Sign up

Export Citation Format

Share Document