scholarly journals Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

2016 ◽  
Vol 23 (7) ◽  
pp. 072121 ◽  
Author(s):  
S. Gerashchenko ◽  
D. Livescu
1972 ◽  
Vol 94 (1) ◽  
pp. 156-160 ◽  
Author(s):  
D. Y. Hsieh

The effect on the interfacial gravity wave between two fluids is studied when there is a temperature gradient in the fluids. It is found that the thermal effect is closely related to the phase transformation across the interface. The interfacial conditions with mass flow are first derived. Then the dispersion relation for the interfacial wave is obtained. It is found that the effect of evaporation is to damp the interfacial wave and to enhance the Rayleigh-Taylor instability. It is also found that the system will be stabilized or destabilized depending on whether the vapor is hotter or colder than the liquid.


2018 ◽  
Vol 5 (3) ◽  
pp. 95-98
Author(s):  
F. E. M. Silveira

In this work, the Rayleigh-Taylor instability is addressed in a viscous-resistive current slab, by assuming a finite electron skin depth. The formulation is developed on the basis of an extended form of Ohm’s law, which includes a term proportional to the explicit time derivative of the current density. In the neighborhood of the rational surface, a viscous-resistive boundary-layer is defined in terms of a resistive and a viscous boundary layers. As expected, when viscous effects are negligible, it is shown that the viscous-resistive boundary-layer is given by the resistive boundary-layer. However, when viscous effects become important, it is found that the viscous-resistive boundary-layer is given by the geometric mean of the resistive and viscous boundary-layers. Scaling laws of the time growth rate of the Rayleigh-Taylor instability with the plasma resistivity, fluid viscosity, and electron number density are discussed.


Sign in / Sign up

Export Citation Format

Share Document