scholarly journals Early science commissioning results of the sub-micron resolution X-ray spectroscopy beamline (SRX) in the field of materials science and engineering

Author(s):  
Yu-chen Karen Chen-Wiegart ◽  
Garth Williams ◽  
Chonghang Zhao ◽  
Hua Jiang ◽  
Li Li ◽  
...  
1993 ◽  
Vol 8 (1) ◽  
pp. 25-28
Author(s):  
G. D. Yao ◽  
C. L. Kuo

X-ray diffraction quantitative phase analysis is a technique widely used in materials science and engineering research. The method proposed by Zevin [L. S. Zevin, J. Appl. Cryst. 10, 147 (1977)] has proven very useful in practice because standards or pure crystalline phases are not needed, but, Zevin only described the case ofnsamples, each of which contain different concentrations of the samenphases. An extension of this method, in which the reference samples could contain less phases than the analyzed sample is proposed in this paper. The absence of phases in reference samples is not arbitrary but depends on certain conditions. The conditions required to solve the equations are discussed in detail using the concepts of the set theory, and the results of confirmation experiments agree well with the theory.


1997 ◽  
Vol 3 (S2) ◽  
pp. 281-282
Author(s):  
Anthony J. Garratt-Reed

The Center for Materials Science and Engineering at MIT, a Materials Research Science and Engineering Center sponsored by the National Science Foundation, maintains and supports, amongst others, an Electron Microscopy Shared Experimental Facility. The purpose of this paper is to highlight selected recent research results for high-resolution investigations performed in that facility.The facility owns the first VG HB603 intermediate-voltage FEG-STEM, which operates at 250KeV and is equipped with a high-solid-angle x-ray detector and a Gatan Digi-Peels. It was intended to be, and has been, used for high sensitivity, high spatial resolution microanalysis. It is well-known that the “resolution” of an x-ray analysis is intimately (and inversely) related to its sensitivity; one extreme situation occurs when analyzing, for example, a diffusion profile, when the need is to determine the composition to the highest precision. An example of such an analysis is given in fig. 1. In this case, the sample is a 1.4Cr-0.8C pearlitic steel, and the chromium analysis is carried out across a cementite plate. During the growth of the pearlite, the chromium, which is not thermodynamically required to redistribute, nevertheless diffuses along the growth interface towards the cementite, resulting in a comparatively wide depletion profile in the ferrite, and a very narrow enrichment in the cementite.


MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1687-1692 ◽  
Author(s):  
Yakov E. Cherner ◽  
Maija M. Kuklja ◽  
Michael J. Cima ◽  
Alexander I. Rusakov ◽  
Alexander S. Sigov ◽  
...  

ABSTRACTA virtual X-Ray Laboratory for Materials Science and Engineering has been developed and used as a flexible and powerful tool to help undergraduate and graduate students become familiar with the design and operation of the X-ray equipment in visual and interactive ways in order to learn fundamental principles underlying X-ray analytical methods. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in physical X-ray labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Students have also used the virtual diffractometer linked and synchronized with an actual powder diffractometer for blended experimentation. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of students’ performance and designed new virtual experiments and more personalized learning assignments for students. The lab has also been integrated with the MITx course available on the massive open online course edX platform for Massachusetts Institute of Technology for undergraduate students.


Author(s):  
John Banhart ◽  
András Borbély ◽  
Krzysztof Dzieciol ◽  
Francisco Garcia-Moreno ◽  
Ingo Manke ◽  
...  

2000 ◽  
Vol 632 ◽  
Author(s):  
Eric Werwa

ABSTRACTA review of the educational literature on naive concepts about principles of chemistry and physics and surveys of science museum visitors reveal that people of all ages have robust alternative notions about the nature of atoms, matter, and bonding that persist despite formal science education experiences. Some confusion arises from the profound differences in the way that scientists and the lay public use terms such as materials, metals, liquids, models, function, matter, and bonding. Many models that eloquently articulate arrangements of atoms and molecules to informed scientists are not widely understood by lay people and may promote naive notions among the public. Shifts from one type of atomic model to another and changes in size scales are particularly confusing to learners. People's abilities to describe and understand the properties of materials are largely based on tangible experiences, and much of what students learn in school does not help them interpret their encounters with materials and phenomena in everyday life. Identification of these challenges will help educators better convey the principles of materials science and engineering to students, and will be particularly beneficial in the design of the Materials MicroWorld traveling museum exhibit.


2021 ◽  
Vol 22 (9) ◽  
pp. 4543
Author(s):  
Xuan-Hung Pham ◽  
Seung-min Park ◽  
Bong-Hyun Jun

Nano/micro particles are considered to be the most valuable and important functional materials in the field of materials science and engineering [...]


Sign in / Sign up

Export Citation Format

Share Document