Stability analysis of dissolution-driven convection in porous media

2017 ◽  
Vol 29 (1) ◽  
pp. 014102 ◽  
Author(s):  
Hamid Emami-Meybodi
Author(s):  
Peter Vadasz

The dynamics of weak turbulence in small Prandtl number convection in porous media is substantially distinct than the corresponding dynamics for moderate and large Prandtl numbers. Linear stability analysis is performed and its results compared with numerical computations to reveal the underlying phenomena.


2017 ◽  
Vol 818 ◽  
Author(s):  
Hamid Karani ◽  
Christian Huber

The present study focuses on the transition between steady convective patterns in fluid-saturated porous media. We conduct experiments to identify the transition point from the single- to double-cell pattern in a two-dimensional porous medium. We then perform a basin stability analysis to assess the relative stability of different convective modes. The resulting basin stability diagram not only provides the domains of coexistence of different modes, but it also shows that the likelihood of finding convective patterns depends strongly on the Rayleigh number. The experimentally observed transition point from single- to double-cell mode agrees well with the stochastically preferred mode inferred from the basin stability diagram.


Author(s):  
Y. Jin ◽  
A. V. Kuznetsov

One of the most controversial topics in the field of convection in porous media is the issue of macroscopic turbulence. It remains unclear whether it can occur in porous media. It is difficult to carry out velocity measurements within porous media, as they are typically optically opaque. At the same time, it is now possible to conduct a definitive direct numerical simulation (DNS) study of this phenomenon. We examine the processes that take place in porous media at large Reynolds numbers, attempting to accurately describe them and analyze whether they can be labeled as true turbulence. In contrast to existing work on turbulence in porous media, which relies on certain turbulence models, DNS allows one to understand the phenomenon in all its complexity by directly resolving all the scales of motion. Our results suggest that the size of the pores determines the maximum size of the turbulent eddies. If the size of turbulent eddies cannot exceed the size of the pores, then turbulent phenomena in porous media differ from turbulence in clear fluids. Indeed, this size limitation must have an impact on the energy cascade, for in clear fluids the turbulent kinetic energy is predominantly contained within large eddies.


2008 ◽  
Vol 57 (4) ◽  
pp. 2306
Author(s):  
Luo Ying-Ying ◽  
Zhan Jie-Min ◽  
Li Yok-Sheung

Sign in / Sign up

Export Citation Format

Share Document