scholarly journals Role of aluminum in silver paste contact to boron-doped silicon emitters

AIP Advances ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 015306 ◽  
Author(s):  
Wei Wu ◽  
Katherine E. Roelofs ◽  
Shekhar Subramoney ◽  
Kathryn Lloyd ◽  
Lei Zhang
2005 ◽  
Vol 87 (23) ◽  
pp. 231908 ◽  
Author(s):  
N. Desrosiers ◽  
A. Giguère ◽  
O. Moutanabbir ◽  
B. Terreault

1998 ◽  
Vol 540 ◽  
Author(s):  
V.P. Popov ◽  
V.F. Stas ◽  
I.V. Antonova

AbstractThe present work deals with the investigation of the electrical and structural properties of heavily boron-doped silicon irradiated by hydrogen. Blistering and splitting processes are enhanced with an increase in boron concentration in the crystal. The measured values of perpendicular strain are over 0.7% which corresponds to a gas overpressure of 0.5 GPa. Processes which lead to blistering and splitting is better described in the frame of a gas pressure model than a model of local stress caused by the defects.


Author(s):  
J. V. Maskowitz ◽  
W. E. Rhoden ◽  
D. R. Kitchen ◽  
R. E. Omlor ◽  
P. F. Lloyd

The fabrication of the aluminum bridge test vehicle for use in the crystallographic studies of electromigration involves several photolithographic processes, some common, while others quite unique. It is most important to start with a clean wafer of known orientation. The wafers used are 7 mil thick boron doped silicon. The diameter of the wafer is 1.5 inches with a resistivity of 10-20 ohm-cm. The crystallographic orientation is (111).Initial attempts were made to both drill and laser holes in the silicon wafers then back fill with photoresist or mounting wax. A diamond tipped dentist burr was used to successfully drill holes in the wafer. This proved unacceptable in that the perimeter of the hole was cracked and chipped. Additionally, the minimum size hole realizable was > 300 μm. The drilled holes could not be arrayed on the wafer to any extent because the wafer would not stand up to the stress of multiple drilling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Kosowska ◽  
Paweł Jakóbczyk ◽  
Michał Rycewicz ◽  
Alex Vitkin ◽  
Małgorzata Szczerska

AbstractWe present an advanced multimodality characterization platform for simultaneous optical and electrochemical measurements of ferrocyanides. Specifically, we combined a fiber-optic Fabry–Perot interferometer with a three-electrode electrochemical setup to demonstrate a proof-of-principle of this hybrid characterization approach, and obtained feasibility data in its monitoring of electrochemical reactions in a boron-doped diamond film deposited on a silica substrate. The film plays the dual role of being the working electrode in the electrochemical reaction, as well as affording the reflectivity to enable the optical interferometry measurements. Optical responses during the redox reactions of the electrochemical process are presented. This work proves that simultaneous opto-electrochemical measurements of liquids are possible.


Author(s):  
Yunhao Zhang ◽  
Hongxin Qin ◽  
Yuting Huang ◽  
Feng Zhang ◽  
Hairong Liu ◽  
...  

Due to the essential role of Fe3+ in physiological and pathological processes, the detection of Fe3+ has drawn an increasing attention in the field of disease diagnosis and environmental protection....


2010 ◽  
Vol 484 (4-6) ◽  
pp. 258-260 ◽  
Author(s):  
D.D.D. Ma ◽  
K.S. Chan ◽  
D.M. Chen ◽  
S.T. Lee

Solar RRL ◽  
2021 ◽  
Author(s):  
Bruno Vicari Stefani ◽  
Moonyong Kim ◽  
Matthew Wright ◽  
Anastasia Soeriyadi ◽  
Dmitriy Andronikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document