Influence of heat treatment techniques on hot formability of AZ61 magnesium alloy

2017 ◽  
Author(s):  
Maziar Ramezani
2016 ◽  
Vol 61 (1) ◽  
pp. 405-410
Author(s):  
M. Bigaj ◽  
S. Boczkal ◽  
J. Żelechowski ◽  
M. Gawlik ◽  
M. Mitka

The results of studies carried out on the heat treated AZ61 magnesium alloy extruded by two methods, i.e. direct extrusion and continuous rotary extrusion, were presented. As part of the work, parameters of the T6 heat treatment were proposed and aging curves were plotted. The solution heat treatment process was accompanied by the grain growth. During artificial aging, due to the decomposition of solid solution, the β-Mg17Al12 phase was precipitated from the supersaturated α solution. It precipitated in a coagulated form at the grain boundaries and in the form of fine-dispersed plates arranged in a preferred direction relative to the grain orientation. Rods obtained by continuous rotary extrusion, unlike those made by the direct process, exhibited a low degree of texturing and lack of anisotropic properties.


Author(s):  
Q. B. Nguyen ◽  
Y. H. D. Chua ◽  
K. S. Tun ◽  
J. Chan ◽  
R. Kwok ◽  
...  

In this paper, AZ61 magnesium alloy composites containing nanoalumina and micron-sized copper particulates are synthesized using the technique of disintegrated melt deposition followed by hot extrusion. The simultaneous addition of nano-Al2O3 and copper particulates led to an overall improvement in both microstructural characteristics in terms of distribution and morphology of secondary phases and mechanical response of AZ61. The presence of nanoalumina particulates broke down and dispersed the secondary phase Mg17Al12. The 0.2% yield strength increased from 216 MPa to 274 MPa. The ductility increased from 8.4% to 9.3% in the case of the AZ61-1.5Al2O3 sample. The results of aging heat treatment in the case of the AZ61-1.5Al2O3-1Cu sample showed significant improvement in both tensile strength, ductility, and work of fracture (54% increment). An attempt is made to correlate the tensile response of composites with their microstructural characteristics.


2008 ◽  
Vol 3 (2) ◽  
pp. 63-69
Author(s):  
M. Sivapragash ◽  
◽  
V. Sateeshkumar ◽  
P.R. Lakshminarayanan ◽  
R. Karthikeyan ◽  
...  

Alloy Digest ◽  
1974 ◽  
Vol 23 (4) ◽  

Abstract ALUMINUM 3004 is nominally an aluminum-manganese-magnesium alloy which cannot be hardened by heat treatment; however, it can be strain hardened by cold working. It has higher strength than Aluminum 3003 and good workability, weldability and resistance to corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-51. Producer or source: Various aluminum companies. Originally published June 1957, revised April 1974.


2021 ◽  
Vol 1107 (1) ◽  
pp. 012137
Author(s):  
S. A. Afolalu ◽  
E.Y. Salawu ◽  
O. O. Joseph ◽  
S. Oladipupo ◽  
M. E. Emetere ◽  
...  

2016 ◽  
Vol 677 ◽  
pp. 125-132 ◽  
Author(s):  
Yuchun Yuan ◽  
Aibin Ma ◽  
Xiaofan Gou ◽  
Jinghua Jiang ◽  
Godfred Arhin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document