Effect of electron beam irradiation on thermal and mechanical properties of poly (lactic acid)/poly (ethylene-co-glycidyl methacrylate) blend

Author(s):  
Ashish Kumar ◽  
T. Venkatappa Rao ◽  
S. Ray Chowdhury ◽  
S. V. S. R. Reddy
2016 ◽  
Vol 133 ◽  
pp. 293-302 ◽  
Author(s):  
Mohammed Mansouri ◽  
Abdelkader Berrayah ◽  
Christophe Beyens ◽  
Christine Rosenauer ◽  
Charafeddine Jama ◽  
...  

2019 ◽  
Vol 33 (26) ◽  
pp. 1950305 ◽  
Author(s):  
Subhashree Patra ◽  
Kamal Lochan Mohanta ◽  
Chhatrapati Parida

This investigation aims to analyze the effects of electron beam irradiation on the morphological and mechanical properties of green composites synthesized using natural fibers of luffa cylindrica (LC) and biodegradable polymer poly (lactic) acid. This work aims to transform the low priced, readily available, agricultural waste product LC fiber into a high value product. The major challenge during the fabrication of natural fiber composites is the chemical bonding between hydrophilic LC fiber and hydrophobic poly lactic acid (PLA) matrix. Due to the disagreeing chemical nature of fiber and matrix, they are not compatible. The fibers are exposed to physical treatment, i.e., electron beam irradiation of different doses 0.5, 1.0, 2.0, 4.0 and 10.0 Gy using 6 MeV medical linear accelerator to increase the compatibility of LC fiber with PLA. Before irradiation, LC fibers are modified with calcium salts to explore the use of composite materials in biomedical terrain. When PLA is reinforced with irradiated LC fiber, tensile strength increases by 79.87% and flexural strength increases by 177%. Mechanical parameters generated by flexural and tensile tests of this study can be explored to have various clinical applications like bone implant, replacement of cervical cavities, etc.


2021 ◽  
Vol 7 (8) ◽  
pp. 79528-79537
Author(s):  
Pedro Marcio Munhoz ◽  
Fernando Codelo Nascimento ◽  
Leonardo Gondim de Andrade e Silva ◽  
Julio Harada ◽  
Wilson Aparecido Parejo Calvo

The aim of this research was to evaluate the changes in the mechanical properties of poly(butylene adipate co-terephthalate)/poly(lactic acid) (PBAT/PLA) polymeric blend after the radiation process at different radiation doses. The irradiation was performed in an electron beam accelerator, with 1.5 MeV of energy and 25 mA electric current. The samples were irradiated with doses of 5, 10, 15, 25, 50, 65 and 80 kGy. Both irradiated and non-irradiated samples were characterized by Izod pendulum impact resistance and tensile strength at rupture. The results showed an increase of 44% in relation to Izod impact resistance at a dose of 65 kGy. However, the module of elasticity decreased 56% and tensile strength at rupture decreased 55% at the same radiation dose. In relation to elongation, significant alterations caused by electron beam irradiation was not observed. Therefore, it can be concluded that irradiated blends could be used to make environmentally friendly products, which could absorb impact energy. 


Sign in / Sign up

Export Citation Format

Share Document