scholarly journals Performance of alkali-activated fly ash incorporated with GGBFS and micro-silica in the interfacial transition zone, microstructure, flowability, mechanical properties and drying shrinkage

2017 ◽  
Author(s):  
Yuyun Tajunnisa ◽  
Masaaki Sugimoto ◽  
Takahiro Uchinuno ◽  
Takahiro Sato ◽  
Yoshinori Toda ◽  
...  
2017 ◽  
Vol 24 (5) ◽  
pp. 773-782
Author(s):  
Maochieh Chi

AbstractThe study investigates the effects of the alkaline solution/binder ratio and the curing condition on the mechanical properties of alkali-activated fly ash (AAFA) mortars. Class F fly ash was used as the raw material, and sodium hydroxide and liquid sodium silicate were used for the preparation of alkaline activators. Three alkaline solution-to-binder ratios (0.35, 0.5, and 0.65) and four different initial curing conditions (curing in air at ambient temperature for 24 h, 30°C for 24 h, 65°C for 12 h, and 85°C for 6 h) were considered. Test results show that AAFA mortars with alkaline solution-to-binder ratio of 0.35 had higher compressive strength, lower drying shrinkage, lower water absorption, and lower initial surface absorption rate than the other mortars. Furthermore, the curing condition influenced the compressive strength development and drying shrinkage of AAFA mortars at early ages. AAFA mortars cured at 65°C for 12 h appeared to have superior mechanical properties. XRD demonstrates that the hydration products of AAFA mortars are mainly amorphous alkaline aluminosilicate gel, which attributed to the compressive strength. Consequently, the alkaline solution-to-binder ratio significantly affects more the mechanical properties than the curing condition based on the presented results.


2019 ◽  
Vol 23 (9) ◽  
pp. 3875-3888 ◽  
Author(s):  
Anant Lal Murmu ◽  
Anamika Jain ◽  
Anjan Patel

Sign in / Sign up

Export Citation Format

Share Document