curing condition
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 48)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Greg White ◽  
Matthew Johnson

Concrete for airport rigid pavement construction is generally specified to achieve a minimum characteristic flexural strength of 4.5 MPa and acceptance testing during construction aims to verify this key design assumption. The large flexural beam specimens are cumbersome and the testing is expensive. Consequently, industry desires a more convenient test and a laboratory-based conversion to an estimated flexural strength for acceptance testing during production. This research developed and trialed a protocol for the conversion of indirect tensile strength and compressive strength to estimate the flexural strength. The laboratory correlation was encouraging. However, when trialed on a real construction project, the conversions significantly underestimated the measured flexural strength and the risk of rejecting compliant batches of concrete was significantly higher. Further research is required to understand why the reliable conversions developed in the laboratory failed in the field. This may be related to the effect of ambient temperature on 28 day flexural strength, despite the constant curing condition.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7865
Author(s):  
Shuai Zhang ◽  
Bing Han ◽  
Huibing Xie ◽  
Mingzhe An ◽  
Shengxu Lyu

In order to shorten construction periods, concrete is often cured using steam and is loaded at an early age. This changes the performance and even the durability of the concrete compared to concrete that has been cured under normal conditions. Thus, the pattern and the mechanism of concrete performance change under different curing conditions, and loading ages are of great significance. The development of brittleness under different curing conditions and loading ages was studied. The evaluation methods that were used to determine concrete brittleness were expounded. Steam, standard, and natural curing conditions were carried out on single-side notched concrete beams as well as on a concrete prism and cubic blocks. The compressive strength and splitting tensile strength of the concrete blocks along with the fracture performance of the concrete beams were tested after 3, 7, 28, and 90 days. The steam curing condition significantly improved the strength of concrete before 28 days had passed, and the standard curing condition improved the strength of concrete after 28 days. Based on the experimental fracture parameters, a two-parameter fracture model was applied to study the development of fracture toughness KICS, critical crack tip opening displacement CTODc, and critical strain energy release rate GICS with hydration age under different curing conditions. With respect to long-term performance, the standard curing condition was better at resisting concrete crack propagations than the steam curing condition was. The characteristic length lch and the material length Q under the three curing conditions and the long-term development of brittleness in the concrete indicated that steam curing increased the concrete brittleness. Considering the effects of the curing condition and the loading age, a time-dependent concrete fracture toughness model was established, and the predicted value of the model was verified against the measured value. The results indicated that the model was able to accurately predict the fracture toughness with an error rate of less than 16%.


2021 ◽  
Author(s):  
Nataliya N. Klimenko ◽  
Kristina I. Kiseleva ◽  
Karina I. Kienskaya ◽  
Alexey V. Nistratov ◽  
Leonid M. Delitsyn

Author(s):  
Chong Wang ◽  
Mingyi Zhang ◽  
Qicai Wang ◽  
Rongling Zhang ◽  
Wansheng Pei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document