scholarly journals Intergranular stress study of TC11 titanium alloy after laser shock peening by synchrotron-based high-energy X-ray diffraction

AIP Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 055126 ◽  
Author(s):  
R. Su ◽  
L. Li ◽  
Y. D. Wang ◽  
Z. H. Nie ◽  
Y. Ren ◽  
...  
2011 ◽  
Vol 697-698 ◽  
pp. 466-469 ◽  
Author(s):  
Yu Qin Li ◽  
Wei Feng He ◽  
Ying Hong Li ◽  
Qi Peng Li ◽  
Xiang Fan Nie

In this paper, the microstructure and microhardness of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy with and without laser shock peening (LSP) were examined and compared. The titanium alloy samples were treated with different layers, at the same power density. X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and microhardness techniques were used to analyse microstructure and mechanical. X-ray diffraction analysis shows that there was not any phase transformation and no new crystalline phases have been formed. TEM studies demonstrate that both α and β phase can been refined in the surface layer with LSP. The microhardness measurements with LSP demonstrate that Hardness of crystallization surface is high up to 418MPa, which is more than the sample without LSP, the shock wave improved the microhardness for about 8%, and the affected depth is about 400 microns from the surface.


2013 ◽  
Vol 681 ◽  
pp. 266-270 ◽  
Author(s):  
Xiang Fan Nie ◽  
Wei Feng He ◽  
Liu Cheng Zhou ◽  
Yu Qin Li ◽  
Yan Chai

The blade, made of TC11 titanium alloy, is prone to result in fatigue failure in the formidable environment in aero-engine. So a higher performance request of the material is brought forward. In this paper, laser shock peening(LSP) as a solution is applied to TC11 titanium alloy and microstructure, residual stress and microhardness with and without LSP were examined and compared via transmission electron microscope(TEM), X ray diffraction(XRD)and microhardness tester. The TEM results indicate that a great high density of dislocations are generated and evolve into the dislocation wall, sub-boundary and grain boundary. The nanocrystallites are formed and become smaller and more uniform with greater impacts. A high compressive residual stress above -540MPa is introduced with an increasing plastically affected layer with different impacts. The microhardness test result shows that LSP can obviously increase the hardness by 20 percent or so, and the affected depth increases with the impact from 600μm to 1200μm.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4711
Author(s):  
Xufeng Yang ◽  
Hongjian Zhang ◽  
Haitao Cui ◽  
Changlong Wen

The purpose of this paper is to investigate the performance of laser shock peening (LSP) subjected to fretting fatigue with TC11 titanium alloy specimens and pads. Three laser power densities (3.2 GW/cm2, 4.8 GW/cm2 and 6.4 GW/cm2) of LSP were chosen and tested using manufactured fretting fatigue apparatus. The experimental results show that the LSP surface treatment significantly improves the fretting fatigue lives of the fretting specimens, and the fretting fatigue life increases most when the laser power density is 4.8 GW/cm2. It is also found that with the increase of the laser power density, the fatigue crack initiation location tends to move from the surface to the interior of the specimen.


2019 ◽  
Vol 943 ◽  
pp. 20-25
Author(s):  
Ran Zhu ◽  
Yong Kang Zhang ◽  
Gui Fang Sun ◽  
Pu Li

The confined laser shock peening (LSP) is an innovative surface treatment technique designed to improve the fatigue performance of materials by imparting compressive residual stresses into materials. A 3D finite element model was developed to predict the surface residual stress and plastically affected depth of the TC11 titanium alloy after LSP. The modeling procedure consists of two successive explicit analysis steps. The performance of finite element model was verified by comparing simulated results with the experimental data. With the validated finite element model, the influence of the process parameters (LSP path, thickness of the sample, number of impacts) was investigated on the surface residual stress and plastically affected depth of the TC11 titanium alloy after LSP. Some simulated results can be used to mentor the optimization of the process parameters of LSP.


2013 ◽  
Vol 40 (8) ◽  
pp. 0803006 ◽  
Author(s):  
聂祥樊 Nie Xiangfan ◽  
何卫锋 He Weifeng ◽  
臧顺来 Zang Shunlai ◽  
王学德 Wang Xuede ◽  
李玉琴 Li Yuqin

Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 131-138
Author(s):  
杨晶 Yang Jing ◽  
周建忠 Zhou Jianzhong ◽  
黄舒 Huang Shu ◽  
左立党 Zuo Lidang ◽  
季杏露 Ji Xinglu ◽  
...  

2020 ◽  
Vol 47 (5) ◽  
pp. 0502006
Author(s):  
刘亚鹏 Liu Yapeng ◽  
史志俊 Shi Zhijun ◽  
赵一昭 Zhao Yizhao ◽  
朱亮 Zhu Liang ◽  
刘马宝 Liu Mabao

Sign in / Sign up

Export Citation Format

Share Document