Physical and mechanical properties of injection moulded 316L stainless steel using waste rubber binder

2017 ◽  
Author(s):  
Rosniza Rabilah ◽  
Nor ‘Aini Wahab ◽  
Mohd Afian Omar ◽  
Talib Ria Jaafar ◽  
Salina Budin ◽  
...  
2019 ◽  
Vol 8 (4) ◽  
pp. 6825-6829 ◽  

Additive manufacturing (AM) is a process of making parts by adding ultrathin layers of materials such as liquid, powder or sheet material layer by layer using 3D printing machine with the aid of a computer-aided design (CAD) software from 3D model data. Intricate, complex parts with graded material can be fabricated with ease. However, additively manufactured parts can vary in physical and mechanical properties with conventionally manufactured parts. In this final year project, AM was done using metal powder of 316L stainless steel alloy owing to good corrosion resistance, ductility and strength. The main objectives for this project are to fabricate 316L stainless steel using AM and to study the physical and mechanical properties of the addictively manufactured specimens compared with electrical discharge machining (EDM) wire cut specimens. A standard specimen bone shaped were manufactured in accordance with ASTM E8 and followed by physical and mechanical testing. From the testing and analysis, 316L stainless steel samples manufactured via AM route have the ultimate tensile strength ranged from 514 to 520 MPa while EDM specimens ranged from 574 to 576 MPa, the yield strength of AM specimens ranged from 385 to 390 MPa while EDM specimens ranged from 350 to 355 MPa, and the average elongation at failure of AM specimens are 45% while EDM specimens are 66%. From this project, it shows that AM specimens have comparable physical and mechanical properties with EDM specimens.


2020 ◽  
Author(s):  
Valentina A. Moskvina ◽  
Galina G. Maier ◽  
Kamil N. Ramazanov ◽  
Roman S. Esipov ◽  
Aleksey A. Nikolaev ◽  
...  

2021 ◽  
Vol 290 ◽  
pp. 116970
Author(s):  
Thomas Feldhausen ◽  
Narendran Raghavan ◽  
Kyle Saleeby ◽  
Lonnie Love ◽  
Thomas Kurfess

2021 ◽  
Vol 1028 ◽  
pp. 403-408
Author(s):  
Apang Djafar Shieddieque ◽  
Shinta Virdhian ◽  
Moch Iqbal Zaelana Muttahar ◽  
Muhammad Rafi Muttaqin

Metal injection molding (MIM) is a near net shape manufacturing technique for producing small, complex, precision parts in mass production. MIM process is manufacturing method that combines traditional shape-making capability of plastic injection molding and the materials flexibility of powder metallurgy. The process consists of the following four steps: mixing of metal powder and binder, injection molding to shape the component, debinding to remove the binder in the component, sintering to consolidate the debound parts. In this research, the physical and mechanical properties of metal injection molded 17-4 PH stainless steel were investigated with the variation of sintering temperatures (1300 °C - 1360 °C) and atmosphere conditions (argon and vacuum conditions). The relative density, microstructure, distortion, and hardness are measured and analyzed in this study. The results show that highest relative density of 87%, relative homogeneous shrinkage and high hardness are achieved by sintering at 1360 °C for 1.5 hours and argon atmosphere. At the same sintering temperature and time, sintering in vacuum shows lower relative density (81%) than that in argon condition due to pores growth. The pore growths were not observed in the argon atmosphere. It can be concluded that sintering stages more rapidly under vacuum condition. The hardness measurements result also showed that high hardness is obtained by high density parts. The optimum average hardness obtained in this study is 239 HV. However, the hardness properties results are still lower than 280 HV according to MPIF Standard 35 for MIM parts.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1923
Author(s):  
Bruna Horta Bastos Kuffner ◽  
Patricia Capellato ◽  
Larissa Mayra Silva Ribeiro ◽  
Daniela Sachs ◽  
Gilbert Silva

Metallic biomaterials are widely used for implants and dental and orthopedic applications due to their good mechanical properties. Among all these materials, 316L stainless steel has gained special attention, because of its good characteristics as an implantable biomaterial. However, the Young’s modulus of this metal is much higher than that of human bone (~193 GPa compared to 5–30 GPa). Thus, a stress shielding effect can occur, leading the implant to fail. In addition, due to this difference, the bond between implant and surrounding tissue is weak. Already, calcium phosphate ceramics, such as beta-tricalcium phosphate, have shown excellent osteoconductive and osteoinductive properties. However, they present low mechanical strength. For this reason, this study aimed to combine 316L stainless steel with the beta-tricalcium phosphate ceramic (β-TCP), with the objective of improving the steel’s biological performance and the ceramic’s mechanical strength. The 316L stainless steel/β-TCP biocomposites were produced using powder metallurgy and functionally graded materials (FGMs) techniques. Initially, β-TCP was obtained by solid-state reaction using powders of calcium carbonate and calcium phosphate. The forerunner materials were analyzed microstructurally. Pure 316L stainless steel and β-TCP were individually submitted to temperature tests (1000 and 1100 °C) to determine the best condition. Blended compositions used to obtain the FGMs were defined as 20% to 20%. They were homogenized in a high-energy ball mill, uniaxially pressed, sintered and analyzed microstructurally and mechanically. The results indicated that 1100 °C/2 h was the best sintering condition, for both 316L stainless steel and β-TCP. For all individual compositions and the FGM composite, the parameters used for pressing and sintering were appropriate to produce samples with good microstructural and mechanical properties. Wettability and hemocompatibility were also achieved efficiently, with no presence of contaminants. All results indicated that the production of 316L stainless steel/β-TCP FGMs through PM is viable for dental and orthopedic purposes.


Sign in / Sign up

Export Citation Format

Share Document