scholarly journals Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting

2020 ◽  
Vol 770 ◽  
pp. 138455 ◽  
Author(s):  
Taban Larimian ◽  
Manigandan Kannan ◽  
Dariusz Grzesiak ◽  
Bandar AlMangour ◽  
Tushar Borkar
2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744015 ◽  
Author(s):  
Zeng Zheng ◽  
Lianfeng Wang ◽  
Biao Yan

Selective laser melting (SLM) was used to prepare 316L stainless steel parts and the effects of laser power on the microstructure and mechanical properties of the final products were studied. With increasing applied laser power, the defects of as-built parts were reduced greatly and the as-built parts presented a highest relative density of 99.1%. The tensile strength of samples was significantly improved from 321 ± 10 MPa to 722 ± 10 MPa. The microhardness was homogeneous; the residual stresses in the samples were tensile, which were higher in the section perpendicular to the laser scanning strategy. The probable reasons for this phenomenon were proposed.


2019 ◽  
Vol 5 ◽  
pp. 23 ◽  
Author(s):  
Anne-Helene Puichaud ◽  
Camille Flament ◽  
Aziz Chniouel ◽  
Fernando Lomello ◽  
Elodie Rouesne ◽  
...  

Additive manufacturing (AM) is rapidly expanding in many industrial applications because of the versatile possibilities of fast and complex fabrication of added value products. This manufacturing process would significantly reduce manufacturing time and development cost for nuclear components. However, the process leads to materials with complex microstructures, and their structural stability for nuclear application is still uncertain. This study focuses on 316L stainless steel fabricated by selective laser melting (SLM) in the context of nuclear application, and compares with a cold-rolled solution annealed 316L sample. The effect of heat treatment (HT) and hot isostatic pressing (HIP) on the microstructure and mechanical properties is discussed. It was found that after HT, the material microstructure remains mostly unchanged, while the HIP treatment removes the materials porosity, and partially re-crystallises the microstructure. Finally, the tensile tests showed excellent results, satisfying RCC-MR code requirements for all AM materials.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 919 ◽  
Author(s):  
Črtomir Donik ◽  
Jakob Kraner ◽  
Irena Paulin ◽  
Matjaž Godec

We have investigated the impact of the process parameters for the selective laser melting (SLM) of the stainless steel AISI 316L on its microstructure and mechanical properties. Properly selected SLM process parameters produce tailored material properties, by varying the laser’s power, scanning speed and beam diameter. We produced and systematically studied a matrix of samples with different porosities, microstructures, textures and mechanical properties. We identified a combination of process parameters that resulted in materials with tensile strengths up to 711 MPa, yield strengths up to 604 MPa and an elongation up to 31%, while the highest achieved hardness was 227 HV10. The correlation between the average single-cell diameter in the hierarchical structure and the laser’s input energy is systematically studied, discussed and explained. The same energy density with different SLM process parameters result in different material properties. The higher energy density of the SLM produces larger cellular structures and crystal grains. A different energy density produces different textures with only one predominant texture component, which was revealed by electron-backscatter diffraction. Furthermore, three possible explanations for the origin of the dislocations are proposed.


Sign in / Sign up

Export Citation Format

Share Document